scholarly journals Lie Group Analysis and Similarity Solutions for Mixed Convection Boundary Layers in the Stagnation-Point Flow toward a Stretching Vertical Sheet

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Sarkhosh Seddighi Chaharborj ◽  
Fudziah Ismail ◽  
Yousof Gheisari ◽  
Reza Seddighi Chaharborj ◽  
Mohd Rizam Abu Bakar ◽  
...  

An analysis for the mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet is carried out via symmetry analysis. By employing Lie group method to the given system of nonlinear partial differential equations, we can obtain information about the invariants and symmetries of these equations. This information can be used to determine the similarity variables that will reduce the number of independent variables in the system. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using fifth-order Improved Runge-Kutta Method (IRK5) coupled with shooting method. The features of the flow and heat transfer characteristics are analyzed and discussed in detail. Both cases of assisting and opposing flows are considered. This paper' results in comparison with known results are excellent.

2014 ◽  
Vol 69 (12) ◽  
pp. 687-696 ◽  
Author(s):  
Mohammad M. Rahman ◽  
Pop Ioan

AbstractThis paper analyzes the combined effects of buoyancy force, mass flux, and variable surface temperature on the stagnation point flow and heat transfer due to a Jeffery fluid over a vertical surface. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then solved numerically using the function bvp4c from computer algebra software Matlab. Numerical results are obtained for skin friction coefficient, Nusselt number as well as dimensionless velocity and temperature profiles for various values of the controlling parameters namely mixed convection parameter λ, mass flux parameter s, elastic parameter (Deborah number) γ, and the ratio of relaxation and retardation time parameter λ1. The results indicate that dual solutions exist in a certain range of the mixed convection and mass flux parameters. In order to establish the physically realizable of these solutions, a stability analysis has also been performed. The results indicate that mixed convection and mass flux significantly affects the nature of the solutions, skin friction, and Nusselt number of a Jeffery fluid.


2021 ◽  
Vol 10 (9) ◽  
pp. 3273-3282
Author(s):  
M.E.H. Hafidzuddin ◽  
R. Nazar ◽  
N.M. Arifin ◽  
I. Pop

The problem of steady laminar three-dimensional stagnation-point flow on a permeable stretching/shrinking sheet with second order slip flow model is studied numerically. Similarity transformation has been used to reduce the governing system of nonlinear partial differential equations into the system of ordinary (similarity) differential equations. The transformed equations are then solved numerically using the \texttt{bvp4c} function in MATLAB. Multiple solutions are found for a certain range of the governing parameters. The effects of the governing parameters on the skin friction coefficients and the velocity profiles are presented and discussed. It is found that the second order slip flow model is necessary to predict the flow characteristics accurately.


2019 ◽  
Vol 30 (3) ◽  
pp. 1345-1364 ◽  
Author(s):  
Mohamad Mustaqim Junoh ◽  
Fadzilah Md Ali ◽  
Norihan Md Arifin ◽  
Norfifah Bachok ◽  
Ioan Pop

Purpose The purpose of this paper is to investigate the steady magnetohydrodynamics (MHD) boundary layer stagnation-point flow of an incompressible, viscous and electrically conducting fluid past a stretching/shrinking sheet with the effect of induced magnetic field. Design/methodology/approach The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations via the similarity transformations before they are solved numerically using the “bvp4c” function in MATLAB. Findings It is found that there exist non-unique solutions, namely, dual solutions for a certain range of the stretching/shrinking parameters. The results from the stability analysis showed that the first solution (upper branch) is stable and valid physically, while the second solution (lower branch) is unstable. Practical implications This problem is important in the heat transfer field such as electronic cooling, engine cooling, generator cooling, welding, nuclear system cooling, lubrication, thermal storage, solar heating, cooling and heating in buildings, biomedical, drug reduction, heat pipe, space aircrafts and ships with better efficiency than that of nanofluids applicability. The results obtained are very useful for researchers to determine which solution is physically stable, whereby, mathematically more than one solution exist. Originality/value The present results are new and original for the problem of MHD stagnation-point flow over a stretching/shrinking sheet in a hybrid nanofluid, with the effect of induced magnetic field.


2013 ◽  
Vol 30 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Reda G. Abdel-Rahman ◽  
Ahmed M. Megahed

ABSTRACTThe Lie group transformation method is applied for solving the problem of mixed convection flow with mass transfer over a permeable stretching surface with Soret and Dufour effects. The application of Lie group method reduces the number of independent variables by one and consequently the system of governing partial differential equations reduces to a system of ordinary differential equations with appropriate boundary conditions. Further, the reduced non-linear ordinary differential equations are solved numerically by using the shooting method. The effects of various parameters governing the flow and heat transfer are shown through graphs and discussed. Our aim is to detect new similarity variables which transform our system of partial differential equations to a system of ordinary differential equations. In this work a special attention is given to investigate the effect of the Soret and Dufour numbers on the velocity, temperature and concentration fields above the sheet.


2016 ◽  
Vol 71 (9) ◽  
pp. 837-848 ◽  
Author(s):  
Ehtsham Azhar ◽  
Z. Iqbal ◽  
E.N. Maraj

AbstractThe present article dicusses the computational analysis of entropy generation for the stagnation-point flow of Sutterby nanofluid over a linear stretching plate. The Sutterby fluid is chosen to study the effect for three major classes of non-Newtonian fluids, i.e. pseudoplastic, Newtonian, and dilatant. The effects of pertinent physical parameters are examined under the approximation of boundary layer. The system of coupled nonlinear partial differential equations is simplified by incorporating suitable similarity transformation into a system of non-linear-coupled ordinary differential equations. Entropy generation analysis is conducted numerically, and the results are displayed through graphs and tables. Significant findings are listed in the closing remarks.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Haliza Rosali ◽  
Anuar Ishak ◽  
Ioan Pop

The present paper analyzes the problem of two-dimensional mixed convection boundary layer flow near the lower stagnation point of a cylinder embedded in a porous medium. It is assumed that the Darcy's law holds and that the solid and fluid phases of the medium are not in thermal equilibrium. Using an appropriate similarity transformation, the governing system of partial differential equations are transformed into a system of ordinary differential equations, before being solved numerically by a finite-difference method. We investigate the dependence of the Nusselt number on the solid–fluid parameters, thermal conductivity ratio and the mixed convection parameter. The results indicate that dual solutions exist for buoyancy opposing flow, while for the assisting flow, the solution is unique.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1078 ◽  
Author(s):  
Mohamad Mustaqim Junoh ◽  
Fadzilah Md Ali ◽  
Ioan Pop

The revised Buongiorno’s nanofluid model with the effect of induced magnetic field on steady magnetohydrodynamics (MHD) stagnation-point flow of nanofluid over a stretching or shrinking sheet is investigated. The effects of zero mass flux and suction are taken into account. A similarity transformation with symmetry variables are introduced in order to alter from the governing nonlinear partial differential equations into a nonlinear ordinary differential equations. These governing equations are numerically solved using the bvp4c function in Matlab solver, a very adequate finite difference method. The influences of considered parameters ( P r , M, χ , L e , N b , N t , S, and λ ) on velocity, induced magnetic, temperature, and concentration profiles together with the reduced skin friction and heat transfer rate are discussed. Results from these criterion exposed the existence of dual solutions when magnetic field and suction are applied for a specific range of λ . The stability of the solutions obtained is carried out by performing a stability analysis.


Sign in / Sign up

Export Citation Format

Share Document