scholarly journals Microsphere Suspension Array Assays for Detection and Differentiation of Hendra and Nipah Viruses

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Adam J. Foord ◽  
John R. White ◽  
Axel Colling ◽  
Hans G. Heine

Microsphere suspension array systems enable the simultaneous fluorescent identification of multiple separate nucleotide targets in a single reaction. We have utilized commercially available oligo-tagged microspheres (Luminex MagPlex-TAG) to construct and evaluate multiplexed assays for the detection and differentiation of Hendra virus (HeV) and Nipah virus (NiV). Both these agents are bat-borne zoonotic paramyxoviruses of increasing concern for veterinary and human health. Assays were developed targeting multiple sites within the nucleoprotein (N) and phosphoprotein (P) encoding genes. The relative specificities and sensitivities of the assays were determined using reference isolates of each virus type, samples from experimentally infected horses, and archival veterinary diagnostic submissions. Results were assessed in direct comparison with an established qPCR. The microsphere array assays achieved unequivocal differentiation of HeV and NiV and the sensitivity of HeV detection was comparable to qPCR, indicating high analytical and diagnostic specificity and sensitivity.

2009 ◽  
Vol 83 (14) ◽  
pp. 7252-7260 ◽  
Author(s):  
Jean-Patrick Parisien ◽  
Darja Bamming ◽  
Akihiko Komuro ◽  
Aparna Ramachandran ◽  
Jason J. Rodriguez ◽  
...  

ABSTRACT Diverse members of the Paramyxovirus family of negative-strand RNA viruses effectively suppress host innate immune responses through the actions of their V proteins. The V protein mediates interference with the interferon regulatory RNA helicase MDA5 to avoid cellular antiviral responses. Analysis of the interaction interface revealed the MDA5 helicase C domain as necessary and sufficient for association with V proteins from human parainfluenza virus type 2, parainfluenza virus type 5, measles virus, mumps virus, Hendra virus, and Nipah virus. The identified ∼130-residue region is highly homologous between MDA5 and the related antiviral helicase LGP2, but not RIG-I. Results indicate that the paramyxovirus V proteins can also associate with LGP2. The V protein interaction was found to disrupt ATP hydrolysis mediated by both MDA5 and LGP2. These findings provide a potential mechanistic basis for V protein-mediated helicase interference and identify LGP2 as a second cellular RNA helicase targeted by paramyxovirus V proteins.


2009 ◽  
Vol 83 (22) ◽  
pp. 11979-11982 ◽  
Author(s):  
Jackie Pallister ◽  
Deborah Middleton ◽  
Gary Crameri ◽  
Manabu Yamada ◽  
Reuben Klein ◽  
...  

ABSTRACT Hendra virus and Nipah virus, two zoonotic paramyxoviruses in the genus Henipavirus, have recently emerged and continue to cause sporadic disease outbreaks in humans and animals. Mortality rates of up to 75% have been reported in humans, but there are presently no clinically licensed therapeutics for treating henipavirus-induced disease. A recent report indicated that chloroquine, used in malaria therapy for over 70 years, prevented infection with Nipah virus in vitro. Chloroquine was assessed using a ferret model of lethal Nipah virus infection and found to be ineffective against Nipah virus infection in vivo.


2019 ◽  
Vol 56 (2) ◽  
pp. 93-107
Author(s):  
J. S. Dar ◽  
B. A. Ganai ◽  
R. A. Shahardar ◽  
U. R. Zargar

SummaryThe control of the digenetic trematode Fasciola gigantica has been the major challenge in both cattle and small ruminants as there is a paucity of an effective and commercial vaccine. Thus, the accurate identification and prepatent diagnosis of F. gigantica is an essential prerequisite for its successful prevention and control. In the present study, the morphologically identified specimens isolated from the liver and bile ducts of sheep (Ovis aries) were validated through molecular data. The sequence analysis of ITS-2 of our isolates showed high degree of similarity with F. gigantica and F. hepatica using BLAST function of NCBI. The phylogenetic analysis of our isolates showed a close relationship with previously described F. gigantica and F. hepatica isolates from different countries. The antigenic profile of somatic and E/S antigens of F. gigantica were revealed by SDS–PAGE and immunoblotting using sera from sheep naturally infected with F. gigantica. By SDS-PAGE, 20 distinct bands were revealed from crude somatic fraction. Immunoblotting analysis of these proteins with positive sera exhibited 8 sero-reactive bands ranging from 14 to 97 kDa. Among these 38 and 44 kDa bands were quite specific with high diagnostic specificity and sensitivity. The E/S fraction comprised 7 distinct bands, as revealed by SDS-PAGE analysis. Immunoblotting analysis of these proteins with positive sera exhibited 6 antigenic bands ranging from 23 – 54 kDa. Among these 27 and 33 kDa were found to be quite specific with high diagnostic specificity and sensitivity. The present study concludes that the protein bands of 38 and 44 kDa in somatic fraction and 27 and 33 kDa in E/S fraction can be used for the immunodiagnostic purpose for this economically important parasite, which may also entice further studies regarding their vaccine potential.


2005 ◽  
Vol 102 (30) ◽  
pp. 10652-10657 ◽  
Author(s):  
M. I. Bonaparte ◽  
A. S. Dimitrov ◽  
K. N. Bossart ◽  
G. Crameri ◽  
B. A. Mungall ◽  
...  

mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Viktoriya Borisevich ◽  
Mehmet Hakan Ozdener ◽  
Bilal Malik ◽  
Barry Rockx

ABSTRACT Henipaviruses are emerging zoonotic pathogens that can cause acute and severe respiratory and neurological disease in humans. The pathways by which henipaviruses enter the central nervous system (CNS) in humans are still unknown. The observation that human olfactory neurons are highly susceptible to infection with henipaviruses demonstrates that the olfactory epithelium can serve as a site of Henipavirus entry into the CNS. Henipaviruses are emerging zoonotic viruses and causative agents of encephalitis in humans. However, the mechanisms of entry into the central nervous system (CNS) in humans are not known. Here, we evaluated the possible role of olfactory epithelium in virus entry into the CNS. We characterized Hendra virus (HeV) and Nipah virus (NiV) infection of primary human olfactory epithelial cultures. We show that henipaviruses can infect mature olfactory sensory neurons. Henipaviruses replicated efficiently, resulting in cytopathic effect and limited induction of host responses. These results show that human olfactory epithelium is susceptible to infection with henipaviruses, suggesting that this could be a pathway for neuroinvasion in humans. IMPORTANCE Henipaviruses are emerging zoonotic pathogens that can cause acute and severe respiratory and neurological disease in humans. The pathways by which henipaviruses enter the central nervous system (CNS) in humans are still unknown. The observation that human olfactory neurons are highly susceptible to infection with henipaviruses demonstrates that the olfactory epithelium can serve as a site of Henipavirus entry into the CNS.


2007 ◽  
Vol 88 (2) ◽  
pp. 582-591 ◽  
Author(s):  
Bevan Sawatsky ◽  
Allen Grolla ◽  
Nina Kuzenko ◽  
Hana Weingartl ◽  
Markus Czub

Nipah virus (NiV) and Hendra virus (HeV) are newly identified members of the family Paramyxoviridae and have been classified in the new genus Henipavirus based on unique genetic characteristics distinct from other paramyxoviruses. Transgenic cell lines were generated that expressed either the attachment protein (G) or the fusion protein (F) of NiV. Functional expression of NiV F and G was verified by complementation with the corresponding glycoprotein, which resulted in the development of syncytia. When exposed to NiV and HeV, expression of NiV G in Crandall feline kidney cells resulted in a qualitative inhibition of both cytopathic effect (CPE) and cell death by both viruses. RT-PCR analysis of surviving exposed cells showed a complete absence of viral positive-sense mRNA and genomic negative-sense viral RNA. Cells expressing NiV G were also unable to fuse with cells co-expressing NiV F and G in a fluorescent fusion inhibition assay. Cell-surface staining for the cellular receptors for NiV and HeV (ephrin-B2 and ephrin-B3) indicated that they were located on the surface of cells, regardless of NiV G expression or infection by NiV. These results indicated that viral interference can be established for henipaviruses and requires only the expression of the attachment protein, G. Furthermore, it was found that this interference probably occurs at the level of virus entry, as fusion was not observed in cells expressing NiV G. Finally, expression of NiV G by either transient transfection or NiV infection did not alter the cell-surface levels of the two known viral receptors.


2009 ◽  
Vol 90 (2) ◽  
pp. 398-404 ◽  
Author(s):  
Michael K. Lo ◽  
Brian H. Harcourt ◽  
Bruce A. Mungall ◽  
Azaibi Tamin ◽  
Mark E. Peeples ◽  
...  

The henipaviruses, Nipah virus (NiV) and Hendra virus (HeV), are highly pathogenic zoonotic paramyxoviruses. Like many other paramyxoviruses, henipaviruses employ a process of co-transcriptional mRNA editing during transcription of the phosphoprotein (P) gene to generate additional mRNAs encoding the V and W proteins. The C protein is translated from the P mRNA, but in an alternate reading frame. Sequence analysis of multiple, cloned mRNAs showed that the mRNA editing frequencies of the P genes of the henipaviruses are higher than those reported for other paramyxoviruses. Antisera to synthetic peptides from the P, V, W and C proteins of NiV were generated to study their expression in infected cells. All proteins were detected in both infected cells and purified virions. In infected cells, the W protein was detected in the nucleus while P, V and C were found in the cytoplasm.


2004 ◽  
Vol 78 (10) ◽  
pp. 5358-5367 ◽  
Author(s):  
Jason J. Rodriguez ◽  
Cristian D. Cruz ◽  
Curt M. Horvath

ABSTRACT The V proteins of Nipah virus and Hendra virus have been demonstrated to bind to cellular STAT1 and STAT2 proteins to form high-molecular-weight complexes that inhibit interferon (IFN)-induced antiviral transcription by preventing STAT nuclear accumulation. Analysis of the Nipah virus V protein has revealed a region between amino acids 174 and 192 that functions as a CRM1-dependent nuclear export signal (NES). This peptide is sufficient to complement an export-defective human immunodeficiency virus Rev protein, and deletion and substitution mutagenesis revealed that this peptide is necessary for both V protein shuttling and cytoplasmic retention of STAT1 and STAT2 proteins. However, the NES is not required for V-dependent IFN signaling inhibition. IFN signaling is blocked primarily by interaction between Nipah virus V residues 100 to 160 and STAT1 residues 509 to 712. Interaction with STAT2 requires a larger Nipah virus V segment between amino acids 100 and 300, but deletion of residues 230 to 237 greatly reduced STAT2 coprecipitation. Further, V protein interactions with cellular STAT1 is a prerequisite for STAT2 binding, and sequential immunoprecipitations demonstrate that V, STAT1, and STAT2 can form a tripartite complex. These findings characterize essential regions for Henipavirus V proteins that represent potential targets for therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document