scholarly journals Electricity Usage Scheduling in Smart Building Environments Using Smart Devices

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Eunji Lee ◽  
Hyokyung Bahn

With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%.

Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 19
Author(s):  
Dimitrios Myridakis ◽  
Paul Myridakis ◽  
Athanasios Kakarountas

Recently, there has been a sharp increase in the production of smart devices and related networks, and consequently the Internet of Things. One concern for these devices, which is constantly becoming more critical, is their protection against attacks due to their heterogeneity and the absence of international standards to achieve this goal. Thus, these devices are becoming vulnerable, with many of them not even showing any signs of malfunction or suspicious behavior. The aim of the present work is to introduce a circuit that is connected in series with the power supply of a smart device, specifically an IP camera, which allows analysis of its behavior. The detection circuit operates in real time (real-time detection), sampling the supply current of the device, processing the sampled values and finally indicating any detection of abnormal activities, based on a comparison to normal operation conditions. By utilizing techniques borrowed by simple power analysis side channel attack, it was possible to detect deviations from the expected operation of the IP camera, as they occurred due to intentional attacks, quarantining the monitored device from the rest of the network. The circuit is analyzed and a low-cost implementation (under 5US$) is illustrated. It achieved 100% success in the test results, showing excellent performance in intrusion detection.


2016 ◽  
Vol 33 (6) ◽  
pp. 1753-1766 ◽  
Author(s):  
Chin-Fu Kuo ◽  
Yung-Feng Lu ◽  
Bao-Rong Chang

Purpose – The purpose of this paper is to investigate the scheduling problem of real-time jobs executing on a DVS processor. The jobs must complete their executions by their deadlines and the energy consumption also must be minimized. Design/methodology/approach – The two-phase energy-efficient scheduling algorithm is proposed to solve the scheduling problem for real-time jobs. In the off-line phase, the maximum instantaneous total density and instantaneous total density (ITD) are proposed to derive the speed of the processor for each time instance. The derived speeds are saved for run time. In the on-line phase, the authors set the processor speed according to the derived speeds and set a timer to expire at the corresponding end time instance of the used speed. Findings – When the DVS processor executes a job at a proper speed, the energy consumption of the system can be minimized. Research limitations/implications – This paper does not consider jobs with precedence constraints. It can be explored in the further work. Practical implications – The experimental results of the proposed schemes are presented to show the effectiveness. Originality/value – The experimental results show that the proposed scheduling algorithm, ITD, can achieve energy saving and make the processor fully utilized.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850101 ◽  
Author(s):  
Xu Jiang ◽  
Xiang Long

Recently, an increasing number of real-time systems are implemented on multicore systems. To fully utilize the computation power of multicore systems, the scheduling problem of the real-time parallel task model is receiving more attention. Different types of scheduling algorithms and analysis techniques have been proposed for parallel real-time tasks modeled as directed acyclic graphs (DAG). In this paper, we study the scheduling problem for DAGs under the decomposition paradigm. We propose a new schedulability test and corresponding decomposition strategy. We show that this new decomposition approach strictly dominates the latest decomposition-based approach. Simulations are conducted to evaluate the real-time performance of our proposed scheduling algorithm, against the state-of-the-art scheduling and analysis methods of different types. Experimental results show that our method consistently outperforms other global methods under different parameter settings.


Author(s):  
Mohammed Mahfoudi ◽  
Moulhime El Bekkali ◽  
Abdellah Najid ◽  
Mohamed El Ghazi ◽  
Said Mazer

2009 ◽  
Vol 20 (10) ◽  
pp. 2628-2636 ◽  
Author(s):  
Jian WANG ◽  
Jian-Ling SUN ◽  
Xin-Yu WANG ◽  
Shen-Kang WANG ◽  
Jun-Bo CHEN

Sign in / Sign up

Export Citation Format

Share Document