scholarly journals The Development of a Hybrid EnKF-3DVAR Algorithm for Storm-Scale Data Assimilation

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jidong Gao ◽  
Ming Xue ◽  
David J. Stensrud

A hybrid 3DVAR-EnKF data assimilation algorithm is developed based on 3DVAR and ensemble Kalman filter (EnKF) programs within the Advanced Regional Prediction System (ARPS). The hybrid algorithm uses the extended alpha control variable approach to combine the static and ensemble-derived flow-dependent forecast error covariances. The hybrid variational analysis is performed using an equal weighting of static and flow-dependent error covariance as derived from ensemble forecasts. The method is first applied to the assimilation of simulated radar data for a supercell storm. Results obtained using 3DVAR (with static covariance entirely), hybrid 3DVAR-EnKF, and the EnKF are compared. When data from a single radar are used, the EnKF method provides the best results for the model dynamic variables, while the hybrid method provides the best results for hydrometeor related variables in term of rms errors. Although storm structures can be established reasonably well using 3DVAR, the rms errors are generally worse than seen from the other two methods. With two radars, the results from 3DVAR are closer to those from EnKF. Our tests indicate that the hybrid scheme can reduce the storm spin-up time because it fits the observations, especially the reflectivity observations, better than the EnKF and the 3DVAR at the beginning of the assimilation cycles.

2014 ◽  
Vol 142 (9) ◽  
pp. 3326-3346 ◽  
Author(s):  
Jidong Gao ◽  
David J. Stensrud

A hybrid three-dimensional ensemble–variational data assimilation (3DEnVAR) algorithm is developed based on the 3D variational data assimilation (3DVAR) and ensemble Kalman filter (EnKF) programs with the Advanced Regional Prediction System (ARPS). The method uses the extended control variable approach to combine the static and ensemble-derived flow-dependent forecast error covariances. The method is applied to the assimilation of simulated data from two radars for a supercell storm. Some sensitivity experiments are performed to answer questions about how flow-dependent covariance estimated from the forecast ensemble can be best used in the hybrid 3DEnVAR scheme. When the ensemble size is relatively small (with 5 or 10 ensemble members), it is found that experiments with a weaker weighting value for the ensemble covariance leads to better analysis results. Even when severe sampling errors exist, introducing ensemble-estimated covariances into the variational method still benefits the analysis. For reasonably large ensemble sizes (50–100 members), a stronger relative weighting (>0.8) for the ensemble covariance leads to better analyses from the hybrid 3DEnVAR. In addition, the sensitivity experiments also indicate that the best results are obtained when the number of the augmented control variables is a function of three spatial dimensions and ensemble members, and is the same for all analysis variables.


2019 ◽  
Vol 36 (8) ◽  
pp. 1563-1575 ◽  
Author(s):  
Sung-Min Kim ◽  
Hyun Mee Kim

AbstractIn this study, the observation impacts on 24-h forecast error reduction (FER), based on the adjoint method in the four-dimensional variational (4DVAR) data assimilation (DA) and hybrid-4DVAR DA systems coupled with the Unified Model, were evaluated from 0000 UTC 5 August to 1800 UTC 26 August 2014. The nonlinear FER in hybrid-4DVAR was 12.2% greater than that in 4DVAR due to the use of flow-dependent background error covariance (BEC), which was a weighted combination of the static BEC and the ensemble BEC based on ensemble forecasts. In hybrid-4DVAR, the observation impacts (i.e., the approximated nonlinear FER) for most observation types increase compared to those in 4DVAR. The increased observation impact from using hybrid-4DVAR instead of 4DVAR changes depending on the analysis time and regions. To calculate the ensemble BEC in hybrid-4DVAR, analyses at 0600 and 1800 UTC (0000 and 1200 UTC) used 3-h (9-h) ensemble forecasts. Greater observation impact was obtained when 3-h ensemble forecasts were used for the ensemble BEC at 0600 and 1800 UTC, than with 9-h ensemble forecasts at 0000 and 1200 UTC. Different from other observations, the atmospheric motion vectors (AMVs) deduced from geostationary satellite are more frequently observed in the same area. When the ensemble forecasts with longer integration times were used for the ensemble BEC in hybrid-4DVAR, the observation impact of the AMVs decreased the most in East Asia. This implies that the observation impact of AMVs in East Asia shows the highest sensitivity to the integration time of the ensemble members used for deducing the flow-dependent BEC in hybrid-4DVAR.


2021 ◽  
Vol 149 (1) ◽  
pp. 21-40
Author(s):  
Rong Kong ◽  
Ming Xue ◽  
Chengsi Liu ◽  
Youngsun Jung

AbstractIn this study, a hybrid En3DVar data assimilation (DA) scheme is compared with 3DVar, EnKF, and pure En3DVar for the assimilation of radar data in a real tornadic storm case. Results using hydrometeor mixing ratios (CVq) or logarithmic mixing ratios (CVlogq) as the control variables are compared in the variational DA framework. To address the lack of radial velocity impact issues when using CVq, a procedure that assimilates reflectivity and radial velocity data in two separate analysis passes is adopted. Comparisons are made in terms of the root-mean-square innovations (RMSIs) as well as the intensity and structure of the analyzed and forecast storms. For pure En3DVar that uses 100% ensemble covariance, CVlogq and CVq have similar RMSIs in the velocity analyses, but errors grow faster during forecasts when using CVlogq. Introducing static background error covariance at 5% in hybrid En3DVar (with CVlogq) significantly reduces the forecast error growth. Pure En3DVar produces more intense reflectivity analyses than EnKF that more closely match the observations. Hybrid En3DVar with 50% outperforms other weights in terms of the RMSIs and forecasts of updraft helicity and is thus used in the final comparison with 3DVar and EnKF. The hybrid En3DVar is found to outperform EnKF in better capturing the intensity and structure of the analyzed and forecast storms and outperform 3DVAR in better capturing the intensity and evolution of the rotating updraft.


2007 ◽  
Vol 135 (2) ◽  
pp. 507-525 ◽  
Author(s):  
Ming Hu ◽  
Ming Xue

Abstract Various configurations of the intermittent data assimilation procedure for Level-II Weather Surveillance Radar-1988 Doppler radar data are examined for the analysis and prediction of a tornadic thunderstorm that occurred on 8 May 2003 near Oklahoma City, Oklahoma. Several tornadoes were produced by this thunderstorm, causing extensive damages in the south Oklahoma City area. Within the rapidly cycled assimilation system, the Advanced Regional Prediction System three-dimensional variational data assimilation (ARPS 3DVAR) is employed to analyze conventional and radar radial velocity data, while the ARPS complex cloud analysis procedure is used to analyze cloud and hydrometeor fields and adjust in-cloud temperature and moisture fields based on reflectivity observations and the preliminary analysis of the atmosphere. Forecasts for up to 2.5 h are made from the assimilated initial conditions. Two one-way nested grids at 9- and 3-km grid spacings are employed although the assimilation configuration experiments are conducted for the 3-km grid only while keeping the 9-km grid configuration the same. Data from the Oklahoma City radar are used. Different combinations of the assimilation frequency, in-cloud temperature adjustment schemes, and the length and coverage of the assimilation window are tested, and the results are discussed with respect to the length and evolution stage of the thunderstorm life cycle. It is found that even though the general assimilation method remains the same, the assimilation settings can significantly impact the results of assimilation and the subsequent forecast. For this case, a 1-h-long assimilation window covering the entire initial stage of the storm together with a 10-min spinup period before storm initiation works best. Assimilation frequency and in-cloud temperature adjustment scheme should be set carefully to add suitable amounts of potential energy during assimilation. High assimilation frequency does not necessarily lead to a better result because of the significant adjustment during the initial forecast period. When a short assimilation window is used, covering the later part of the initial stage of storm and using a high assimilation frequency and a temperature adjustment scheme based on latent heat release can quickly build up the storm and produce a reasonable analysis and forecast. The results also show that when the data from a single Doppler radar are assimilated with properly chosen assimilation configurations, the model is able to predict the evolution of the 8 May 2003 Oklahoma City tornadic thunderstorm well for up to 2.5 h. The implications of the choices of assimilation settings for real-time applications are discussed.


2015 ◽  
Vol 8 (5) ◽  
pp. 1315-1320 ◽  
Author(s):  
S. K. Park ◽  
S. Lim ◽  
M. Zupanski

Abstract. In this study, we examined the structure of an ensemble-based coupled atmosphere–chemistry forecast error covariance. The Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem), a coupled atmosphere–chemistry model, was used to create an ensemble error covariance. The control variable includes both the dynamical and chemistry model variables. A synthetic single observation experiment was designed in order to evaluate the cross-variable components of a coupled error covariance. The results indicate that the coupled error covariance has important cross-variable components that allow a physically meaningful adjustment of all control variables. The additional benefit of the coupled error covariance is that a cross-component impact is allowed; e.g., atmospheric observations can exert an impact on chemistry analysis, and vice versa. Given the realistic structure of ensemble forecast error covariance produced by the WRF-Chem, we anticipate that the ensemble-based coupled atmosphere–chemistry data assimilation will respond similarly to assimilation of real observations.


2014 ◽  
Vol 7 (6) ◽  
pp. 8757-8767
Author(s):  
S. K. Park ◽  
S. Lim ◽  
M. Zupanski

Abstract. In this study, we examined the structure of an ensemble-based coupled atmosphere–chemistry forecast error covariance. The Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem), a coupled atmosphere–chemistry model, was used to create an ensemble error covariance. The control variable includes both the dynamical and chemistry model variables. A synthetic single observation experiment was designed in order to evaluate the cross-variable components of a coupled error covariance. The results indicate that the coupled error covariance has important cross-variable components that allow a physically meaningful adjustment of all control variables. The additional benefit of the coupled error covariance is that a cross-component impact is allowed, e.g., atmospheric observations can exert impact on chemistry analysis, and vice versa. Given the realistic structure of ensemble forecast error covariance produced by the WRF-Chem, we anticipate the ensemble-based coupled atmosphere–chemistry data assimilation will respond similarly to assimilation of real observations.


2018 ◽  
Vol 146 (2) ◽  
pp. 447-465 ◽  
Author(s):  
Mark Buehner ◽  
Ping Du ◽  
Joël Bédard

Abstract Two types of approaches are commonly used for estimating the impact of arbitrary subsets of observations on short-range forecast error. The first was developed for variational data assimilation systems and requires the adjoint of the forecast model. Comparable approaches were developed for use with the ensemble Kalman filter and rely on ensembles of forecasts. In this study, a new approach for computing observation impact is proposed for ensemble–variational data assimilation (EnVar). Like standard adjoint approaches, the adjoint of the data assimilation procedure is implemented through the iterative minimization of a modified cost function. However, like ensemble approaches, the adjoint of the forecast step is obtained by using an ensemble of forecasts. Numerical experiments were performed to compare the new approach with the standard adjoint approach in the context of operational deterministic NWP. Generally similar results are obtained with both approaches, especially when the new approach uses covariance localization that is horizontally advected between analysis and forecast times. However, large differences in estimated impacts are obtained for some surface observations. Vertical propagation of the observation impact is noticeably restricted with the new approach because of vertical covariance localization. The new approach is used to evaluate changes in observation impact as a result of the use of interchannel observation error correlations for radiance observations. The estimated observation impact in similarly configured global and regional prediction systems is also compared. Overall, the new approach should provide useful estimates of observation impact for data assimilation systems based on EnVar when an adjoint model is not available.


2014 ◽  
Vol 919-921 ◽  
pp. 1257-1261
Author(s):  
Chao Qun Tan ◽  
Ju Xiu Tong ◽  
Bill X. Hu ◽  
Jin Zhong Yang

This paper mainly discusses some details when applying data assimilation method via an ensemble Kalman filter (EnKF) to improve prediction of adsorptive solute Cr(VI) transfer from soil into runoff. Based on this work, we could make better use of our theoretical model to predict adsorptive solute transfer from soil into surface runoff in practice. The results show that the ensemble number of 100 is reasonable, considering assimilation effect and efficiency after selecting its number from 25 to 225 at an interval of 25. While the initial ensemble value makes little difference to data assimilation (DA) results. Besides, DA results could be improved by multiplying an amplification factor to forecast error covariance matrix due to underestimation of forecast error.


2016 ◽  
Vol 144 (4) ◽  
pp. 1383-1405 ◽  
Author(s):  
Sergey Frolov ◽  
Craig H. Bishop

Abstract Hybrid error covariance models that blend climatological estimates of forecast error covariances with ensemble-based, flow-dependent forecast error covariances have led to significant reductions in forecast error when employed in 4DVAR data assimilation schemes. Tangent linear models (TLMs) designed to predict the differences between perturbed and unperturbed simulations of the weather forecast are a key component of such 4DVAR schemes. However, many forecasting centers have found that TLMs and their adjoints do not scale well computationally and are difficult to create and maintain—particularly for coupled ocean–wave–ice–atmosphere models. In this paper, the authors create ensemble-based TLMs (ETLMs) and test their ability to propagate both climatological and flow-dependent parts of hybrid error covariance models. These tests demonstrate that rank deficiency limits the utility of unlocalized ETLMs. High-rank, time-evolving, flow-adaptive localization functions are constructed and tested using recursive application of short-duration ETLMs, each of which is localized using a static localization. Since TLM operators do not need to be semipositive definite, the authors experiment with a variety of localization approaches including step function localization. The step function localization leads to a local formulation that was found to be highly effective. In tests using simple one-dimensional models with both dispersive and nondispersive dynamics, it is shown that practical ETLM configurations were effective at propagating covariances as far as four error correlation scales.


Sign in / Sign up

Export Citation Format

Share Document