adjustment scheme
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
K. Praveen Kumar ◽  
C. Venkata Narasimhulu ◽  
K. Satya Prasad

The degraded image during the process of image analysis needs more number of iterations to restore it. These iterations take long waiting time and slow scanning, resulting in inefficient image restoration. A few numbers of measurements are enough to recuperate an image with good condition. Due to tree sparsity, a 2D wavelet tree reduces the number of coefficients and iterations to restore the degraded image. All the wavelet coefficients are extracted with overlaps as low and high sub-band space and ordered them such that they are decomposed in the tree ordering structured path. Some articles have addressed the problems with tree sparsity and total variation (TV), but few authors endorsed the benefits of tree sparsity. In this paper, a spatial variation regularization algorithm based on tree order is implemented to change the window size and variation estimators to reduce the loss of image information and to solve the problem of image smoothing operation. The acceptance rate of the tree-structured path relies on local variation estimators to regularize the performance parameters and update them to restore the image. For this, the Localized Total Variation (LTV) method is proposed and implemented on a 2D wavelet tree ordering structured path based on the proposed image smooth adjustment scheme. In the end, a reliable reordering algorithm proposed to reorder the set of pixels and to increase the reliability of the restored image. Simulation results clearly show that the proposed method improved the performance compared to existing methods of image restoration.


2021 ◽  
Vol 21 (18) ◽  
pp. 13997-14018
Author(s):  
Wojciech W. Grabowski ◽  
Hugh Morrison

Abstract. Motivated by recent discussions concerning differences of convective dynamics in polluted and pristine environments, the so-called convective invigoration in particular, this paper provides an analysis of factors affecting convective updraft buoyancy, such as the in-cloud supersaturation, condensate and precipitation loading, and entrainment. We use the deep convective period from simulations of daytime convection development over land discussed in our previous publications. An entraining parcel framework is used in the theoretical analysis. We show that for the specific case considered here, finite (positive) supersaturation noticeably reduces pseudo-adiabatic parcel buoyancy and cumulative convective available potential energy (cCAPE) in the lower troposphere. This comes from keeping a small fraction of the water vapor in a supersaturated state and thus reducing the latent heating. Such a lower-tropospheric impact is comparable to the effects of condensate loading and entrainment in the idealized parcel framework. For the entire tropospheric depth, loading and entrainment have a much more significant impact on the total CAPE. For the cloud model results, we compare ensemble simulations applying either a bulk microphysics scheme with saturation adjustment or a more comprehensive double-moment scheme with supersaturation prediction. We compare deep convective updraft velocities, buoyancies, and supersaturations from all ensembles. In agreement with the parcel analysis, the saturation-adjustment scheme provides noticeably stronger updrafts in the lower troposphere. For the simulations predicting supersaturation, there are small differences between pristine and polluted conditions below the freezing level that are difficult to explain by standard analysis of the in-cloud buoyancy components. By applying the piggybacking technique, we show that the lower-tropospheric buoyancy differences between pristine and polluted simulations come from a combination of temperature (i.e., latent heating) and condensate loading differences that work together to make polluted buoyancies and updraft velocities slightly larger when compared to their pristine analogues. Overall, the effects are rather small and contradict previous claims of a significant invigoration of deep convection in polluted environments.


2021 ◽  
Vol 11 (12) ◽  
pp. 5744
Author(s):  
Lianmeng Chen ◽  
Yijie Liu ◽  
Yihong Zeng ◽  
He Zhang ◽  
Yiyi Zhou

Construction errors are unavoidable in actual cable-bar tensile structures. Construction error analysis, evaluation, and especially adjustment theories were still in their infancy. For the improvement of the situation, based on the equilibrium equation, physical equation, and geometric equation for pin-joint structures, the member length deviation was adopted as the variable, and the relationship between the pre-stress deviation and member length deviation was determined. On this basis, an adjustment method was devised for the pre-stress deviations under three different conditions, and an evaluation of the effectiveness for pre-stress deviation adjustment was proposed. Finally, a 5-m diameter cable-bar tensile structure model was designed and constructed for simulation. The research results demonstrated that the adjusted pre-stress deviations of measuring points can be effectively corrected, and the theoretical results generally coincided with the experimental results. The adjustment effects of pre-stress deviation varied with the number of adjustment cables, and the adjustment effectiveness gradually decreased with the reduction of the number of adjustment cables. Different adjustment schemes produced different structural deformations, and it was necessary to prioritize the adjustment scheme that resulted in lower peak values of internal forces and shape changes during the adjustment process. The research results indicated that the correctness and validity of the proposed error analysis and adjustment method of pre-stress deviation, and its practical application in the guidance of construction errors analysis, pre-stress deviation adjustments, and evaluation of adjustment results of actual pretension structures.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Siqi Wang ◽  
Jingbo Yin ◽  
Rafi Ullah Khan

The focus of this study is on optimizing the schedule adjustment scheme of shared designated driver ferry vehicles to obtain a sustainable and energy-efficient system to pick up and drop off designated drivers to serve drunk customers. A two-stage matching model for driver and customer supply and demand matching and driver ferry vehicle dispatching is designed in order to optimize the total distance travelled and minimize the generalized deviation costs. A maximum residual time adjustment algorithm is designed to reduce the logarithm of new interference demand, and a tabu search algorithm is used to solve the schedule adjustment scheme for ferry vehicles. The validity of the model and the algorithm is verified by a multiperiod example constructed in the Solomon test question bank. The result of numerical experiments shows that the proposed model and algorithm can solve the disruption adjustment scheduling strategy of shared designated driver ferry vehicles. The integrated optimization strategy can effectively improve the utilization rate and the operation efficiency of the shared driver ferry vehicles to reduce operation cost and energy consumption.


Author(s):  
Yu-Han Chen ◽  
Shyue-Ming Tang ◽  
Kung-Jui Pai ◽  
Jou-Ming Chang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document