scholarly journals Role of Electrical Impedance Tomography in Clinical Practice in Pediatric Respiratory Medicine

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Wojciech Durlak ◽  
Przemko Kwinta

This paper summarizes current knowledge about electrical impedance tomography (EIT) and its present and possible applications in clinical practice in pediatric respiratory medicine. EIT is a relatively new technique based on real-time monitoring of bioimpedance. Its possible application in clinical practice related to ventilation and perfusion monitoring in children has gaine increasing attention in recent years. Most of the currently published data is based on studies performed on small and heterogenous groups of patients. Thus the results need to be corroborated in future well-designed clinical trials. Firstly a short theoretical overview summarizing physical principles and main advantages and disadvantages is provided. It is followed by a review of the current data regarding EIT application in ventilation distribution monitoring in healthy individuals. Finally the most important studies utilizing EIT in ventilation and perfusion monitoring in critically ill newborns and children are outlined.

2020 ◽  
Vol 129 (5) ◽  
pp. 1140-1149
Author(s):  
Martina Mosing ◽  
Andreas D. Waldmann ◽  
Muriel Sacks ◽  
Peter Buss ◽  
Jordyn M. Boesch ◽  
...  

Electrical impedance tomography measurements of regional ventilation and perfusion applied to etorphine-immobilized white rhinoceroses in lateral recumbency revealed a pronounced disproportional shift of the measured ventilation and perfusion toward the nondependent lung. The dependent lung was minimally ventilated and perfused, but still aerated. Perfusion was found primarily around the hilum of the nondependent lung. These shifts can explain the gas exchange impairments found in this study. Breath holding can redistribute ventilation.


2019 ◽  
Vol 8 (8) ◽  
pp. 1176 ◽  
Author(s):  
Christian Putensen ◽  
Benjamin Hentze ◽  
Stefan Muenster ◽  
Thomas Muders

Electrical impedance tomography (EIT) is a bedside monitoring tool that noninvasively visualizes local ventilation and arguably lung perfusion distribution. This article reviews and discusses both methodological and clinical aspects of thoracic EIT. Initially, investigators addressed the validation of EIT to measure regional ventilation. Current studies focus mainly on its clinical applications to quantify lung collapse, tidal recruitment, and lung overdistension to titrate positive end-expiratory pressure (PEEP) and tidal volume. In addition, EIT may help to detect pneumothorax. Recent studies evaluated EIT as a tool to measure regional lung perfusion. Indicator-free EIT measurements might be sufficient to continuously measure cardiac stroke volume. The use of a contrast agent such as saline might be required to assess regional lung perfusion. As a result, EIT-based monitoring of regional ventilation and lung perfusion may visualize local ventilation and perfusion matching, which can be helpful in the treatment of patients with acute respiratory distress syndrome (ARDS).


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Elena Spinelli ◽  
Michael Kircher ◽  
Birgit Stender ◽  
Irene Ottaviani ◽  
Maria C. Basile ◽  
...  

Abstract Background In acute respiratory distress syndrome (ARDS), non-ventilated perfused regions coexist with non-perfused ventilated regions within lungs. The number of unmatched regions might reflect ARDS severity and affect the risk of ventilation-induced lung injury. Despite pathophysiological relevance, unmatched ventilation and perfusion are not routinely assessed at the bedside. The aims of this study were to quantify unmatched ventilation and perfusion at the bedside by electrical impedance tomography (EIT) investigating their association with mortality in patients with ARDS and to explore the effects of positive end-expiratory pressure (PEEP) on unmatched ventilation and perfusion in subgroups of patients with different ARDS severity based on PaO2/FiO2 and compliance. Methods Prospective observational study in 50 patients with mild (36%), moderate (46%), and severe (18%) ARDS under clinical ventilation settings. EIT was applied to measure the regional distribution of ventilation and perfusion using central venous bolus of saline 5% during end-inspiratory pause. We defined unmatched units as the percentage of only ventilated units plus the percentage of only perfused units. Results Percentage of unmatched units was significantly higher in non-survivors compared to survivors (32[27–47]% vs. 21[17–27]%, p < 0.001). Percentage of unmatched units was an independent predictor of mortality (OR 1.22, 95% CI 1.07–1.39, p = 0.004) with an area under the ROC curve of 0.88 (95% CI 0.79–0.97, p < 0.001). The percentage of ventilation to the ventral region of the lung was higher than the percentage of ventilation to the dorsal region (32 [27–38]% vs. 18 [13–21]%, p < 0.001), while the opposite was true for perfusion (28 [22–38]% vs. 36 [32–44]%, p < 0.001). Higher percentage of only perfused units was correlated with lower dorsal ventilation (r =  − 0.486, p < 0.001) and with lower PaO2/FiO2 ratio (r =  − 0.293, p = 0.039). Conclusions EIT allows bedside assessment of unmatched ventilation and perfusion in mechanically ventilated patients with ARDS. Measurement of unmatched units could identify patients at higher risk of death and could guide personalized treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huaiwu He ◽  
Yi Chi ◽  
Yun Long ◽  
Siyi Yuan ◽  
Rui Zhang ◽  
...  

Abstract Background The aim of this study was to validate whether regional ventilation and perfusion data measured by electrical impedance tomography (EIT) with saline bolus could discriminate three broad acute respiratory failure (ARF) etiologies. Methods Perfusion image was generated from EIT-based impedance–time curves caused by 10 ml 10% NaCl injection during a respiratory hold. Ventilation image was captured before the breath holding period under regular mechanical ventilation. DeadSpace%, Shunt% and VQMatch% were calculated based on lung perfusion and ventilation images. Ventilation and perfusion maps were divided into four cross-quadrants (lower left and right, upper left and right). Regional distribution defects of each quadrant were scored as 0 (distribution% ≥ 15%), 1 (15% > distribution% ≥ 10%) and 2 (distribution% < 10%). Data percentile distributions in the control group and clinical simplicity were taken into consideration when defining the scores. Overall defect scores (DefectV, DefectQ and DefectV+Q) were the sum of four cross-quadrants of the corresponding images. Results A total of 108 ICU patients were prospectively included: 93 with ARF and 15 without as a control. PaO2/FiO2 was significantly correlated with VQMatch% (r = 0.324, P = 0.001). Three broad etiologies of ARF were identified based on clinical judgment: pulmonary embolism-related disease (PED, n = 14); diffuse lung involvement disease (DLD, n = 21) and focal lung involvement disease (FLD, n = 58). The PED group had a significantly higher DeadSpace% [40(24)% vs. 14(15)%, PED group vs. the rest of the subjects; median(interquartile range); P < 0.0001] and DefectQ score than the other groups [1(1) vs. 0(1), PED vs. the rest; P < 0.0001]. The DLD group had a significantly lower DefectV+Q score than the PED and FLD groups [0(1) vs. 2.5(2) vs. 3(3), DLD vs. PED vs. FLD; P < 0.0001]. The FLD group had a significantly higher DefectV score than the other groups [2(2) vs. 0(1), FLD vs. the rest; P < 0.0001]. The area under the receiver operating characteristic (AUC) for using DeadSpace% to identify PED was 0.894 in all ARF patients. The AUC for using the DefectV+Q score to identify DLD was 0.893. The AUC for using the DefectV score to identify FLD was 0.832. Conclusions Our study showed that it was feasible to characterize three broad etiologies of ARF with EIT-based regional ventilation and perfusion. Further study is required to validate clinical applicability of this method. Trial registration clinicaltrials, NCT04081142. Registered 9 September 2019—retrospectively registered, https://clinicaltrials.gov/show/NCT04081142.


2015 ◽  
Vol 9 (6) ◽  
pp. 721-737 ◽  
Author(s):  
Bo Gong ◽  
Sabine Krueger-Ziolek ◽  
Knut Moeller ◽  
Benjamin Schullcke ◽  
Zhanqi Zhao

Sign in / Sign up

Export Citation Format

Share Document