scholarly journals A Survey of Some Topics Related to Differential Operators

2013 ◽  
Vol 2013 ◽  
pp. 1-17
Author(s):  
Denise Huet

This paper is the result of investigations suggested by recent publications and completes the work of Huet, 2010. The topics, which are dealt with, concern some spaces of functions and properties of solutions of linear and nonlinear, stationary and evolution differential equations, namely, existence, spectral properties, resonances, singular perturbations, boundary layers, and inertial manifolds. They are presented in the alphabetical order. The aim of this document and of Huet, 2010, is to be a useful reference for (young) researchers in mathematics and applied sciences.

Author(s):  
K. J. Brown ◽  
I. M. Michael

SynopsisIn a recent paper, Jyoti Chaudhuri and W. N. Everitt linked the spectral properties of certain second order ordinary differential operators with the analytic properties of the solutions of the corresponding differential equations. This paper considers similar properties of the spectrum of the corresponding partial differential operators.


1991 ◽  
Vol 119 (3-4) ◽  
pp. 219-232 ◽  
Author(s):  
Ondřej Došlý

SynopsisThis paper deals with the oscillation properties of self-adjoint differential equationsThe oscillation criteria are derived, which allows a unified approach to the investigation of (*) near a finite or infinite singularity. These criteria are used to study spectral properties of singular differential operators associated with (*).


Fractals ◽  
2021 ◽  
Author(s):  
MAYS BASIM ◽  
NORAZAK SENU ◽  
ZARINA BIBI IBRAHIM ◽  
ALI AHMADIAN ◽  
SOHEIL SALAHSHOUR

Currently, a study has come out with a novel class of differential operators using fractional-order and variable-order fractal Atangana–Baleanu derivative, which in turn, became the source of inspiration for new class of differential equations. The aim of this paper is to apply the operation matrix to get numerical solutions to this new class of differential equations and help us help us to simplify the problem and transform it into a system of an algebraic equation. This method is applied to solve two types, linear and nonlinear of fractal differential equations. Some numerical examples are given to display the simplicity and accuracy of the proposed technique and compare it with the predictor–corrector and mixture two-step Lagrange polynomial and the fundamental theorem of fractional calculus methods.


Author(s):  
S. G. Rajeev

Thenumerical solution of ordinary differential equations (ODEs)with boundary conditions is studied here. Functions are approximated by polynomials in a Chebychev basis. Sections then cover spectral discretization, sampling, interpolation, differentiation, integration, and the basic ODE. Following Trefethen et al., differential operators are approximated as rectangular matrices. Boundary conditions add additional rows that turn them into square matrices. These can then be diagonalized using standard linear algebra methods. After studying various simple model problems, this method is applied to the Orr–Sommerfeld equation, deriving results originally due to Orszag. The difficulties of pushing spectral methods to higher dimensions are outlined.


2020 ◽  
Vol 26 (2) ◽  
pp. 297-307
Author(s):  
Petro I. Kalenyuk ◽  
Yaroslav O. Baranetskij ◽  
Lubov I. Kolyasa

AbstractWe study a nonlocal problem for ordinary differential equations of {2n}-order with involution. Spectral properties of the operator of this problem are analyzed and conditions for the existence and uniqueness of its solution are established. It is also proved that the system of eigenfunctions of the analyzed problem forms a Riesz basis.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Seyyedeh Roodabeh Moosavi Noori ◽  
Nasir Taghizadeh

AbstractIn this study, a hybrid technique for improving the differential transform method (DTM), namely the modified differential transform method (MDTM) expressed as a combination of the differential transform method, Laplace transforms, and the Padé approximant (LPDTM) is employed for the first time to ascertain exact solutions of linear and nonlinear pantograph type of differential and Volterra integro-differential equations (DEs and VIDEs) with proportional delays. The advantage of this method is its simple and trusty procedure, it solves the equations straightforward and directly without requiring large computational work, perturbations or linearization, and enlarges the domain of convergence, and leads to the exact solution. Also, to validate the reliability and efficiency of the method, some examples and numerical results are provided.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850016 ◽  
Author(s):  
A. A. Hemeda

In this work, a simple new iterative technique based on the integral operator, the inverse of the differential operator in the problem under consideration, is introduced to solve nonlinear integro-differential and systems of nonlinear integro-differential equations (IDEs). The introduced technique is simpler and shorter in its computational procedures and time than the other methods. In addition, it does not require discretization, linearization or any restrictive assumption of any form in providing analytical or approximate solution to linear and nonlinear equations. Also, this technique does not require calculating Adomian’s polynomials, Lagrange’s multiplier values or equating the terms of equal powers of the impeding parameter which need more computational procedures and time. These advantages make it reliable and its efficiency is demonstrated with numerical examples.


Sign in / Sign up

Export Citation Format

Share Document