scholarly journals Application of the Multistep Generalized Differential Transform Method to Solve a Time-Fractional Enzyme Kinetics

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmed Alawneh

The multistep differential transform method is first employed to solve a time-fractional enzyme kinetics. This enzyme-substrate reaction is formed by a system of nonlinear ordinary differential equations of fractional order. The fractional derivatives are described in the Caputo sense. A comparative study between the new algorithm and the classical Runge-Kutta method is presented in the case of integer-order derivatives. The results demonstrate reliability and efficiency of the algorithm developed.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shaher Momani ◽  
Asad Freihat ◽  
Mohammed AL-Smadi

The multistep generalized differential transform method is applied to solve the fractional-order multiple chaotic FitzHugh-Nagumo (FHN) neurons model. The algorithm is illustrated by studying the dynamics of three coupled chaotic FHN neurons equations with different gap junctions under external electrical stimulation. The fractional derivatives are described in the Caputo sense. Furthermore, we present figurative comparisons between the proposed scheme and the classical fourth-order Runge-Kutta method to demonstrate the accuracy and applicability of this method. The graphical results reveal that only few terms are required to deduce the approximate solutions which are found to be accurate and efficient.


2014 ◽  
Vol 69 (1-2) ◽  
pp. 81-89 ◽  
Author(s):  
Anwar Zeb ◽  
Madad Khan ◽  
Gul Zaman ◽  
Shaher Momani ◽  
Vedat Suat Ertürk

In this paper, we consider the SEIR (Susceptible-Exposed-Infected-Recovered) epidemic model by taking into account both standard and bilinear incidence rates of fractional order. First, the nonnegative solution of the SEIR model of fractional order is presented. Then, the multi-step generalized differential transform method (MSGDTM) is employed to compute an approximation to the solution of the model of fractional order. Finally, the obtained results are compared with those obtained by the fourth-order Runge-Kutta method and non-standard finite difference (NSFD) method in the integer case.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Asad Freihat ◽  
Shaher Momani

A new reliable algorithm based on an adaptation of the standard generalized differential transform method (GDTM) is presented. The GDTM is treated as an algorithm in a sequence of intervals (i.e., time step) for finding accurate approximate solutions of fractional-order Rössler chaotic and hyperchaotic systems. A comparative study between the new algorithm and the classical Runge-Kutta method is presented in the case of integer-order derivatives. The algorithm described in this paper is expected to be further employed to solve similar nonlinear problems in fractional calculus.


2010 ◽  
Vol 15 (3) ◽  
pp. 341-350 ◽  
Author(s):  
M. M. Rashidi ◽  
S. A. Mohimanian Pour ◽  
N. Laraqi

In this letter, the differential transform method (DTM) was applied to the micro-polar flow in a porous channel with mass injection. Approximate solutions of the governing system of nonlinear ordinary differential equations were calculated in the form of DTM series with easily computable terms. The validity of the series solutions were verified by comparison with numerical results obtained using a fourth order Runge–Kutta method. The computed DTM velocity profiles are shown and the influence of Reynolds number on the velocity component in x-direction is discussed.


2012 ◽  
Vol 4 (04) ◽  
pp. 422-438 ◽  
Author(s):  
Vedat Suat Ertürk ◽  
Zaid M. Odibat ◽  
Shaher Momani

AbstractIn this paper, a reliable algorithm based on an adaptation of the standard differential transform method is presented, which is the multi-step differential transform method (MSDTM). The solutions of non-linear oscillators were obtained by MSDTM. Figurative comparisons between the MSDTM and the classical fourth-order Runge-Kutta method (RK4) reveal that the proposed technique is a promising tool to solve non-linear oscillators.


2019 ◽  
Vol 8 (3) ◽  
pp. 2774-2779

In this paper, we acquire the inexact solutions of Special cases of Riccati Differential equation of Fractional order using Generalized Differential Transform Method (GDTM). The fractional derivatives are described in the Caputo sense. Accuracy and competence of the proposed method is verified through numerical solution of some special cases of Riccati Differential equation of fractional order. The obtained results reveal that the performance of the proposed method is specific and predictable.


2018 ◽  
Vol 16 (01) ◽  
pp. 1850094 ◽  
Author(s):  
Yupeng Qin ◽  
Zhen WANG ◽  
Li Zou ◽  
Mingfeng He

A new semi-numerical, semi-analytical approach based on the differential transform method is proposed to solve the problems of a gas-filled hyper-spherical bubble governed by the Rayleigh equation. Semi-numerical, semi-analytical approximations are constructed for the Rayleigh equation in the form of piecewise functions. The proposed approach is compared with the standard fourth-order Runge–Kutta method and the standard differential transform method, respectively. The results reveal two main benefits of the new approach, one is that it possesses result with higher precision than the standard fourth-order Runge–Kutta method, the other is that it remains valid and accurate for longer time compared to the standard differential transform method. In addition, we also consider the Rayleigh equation in [Formula: see text] dimensions when the surface tension is not zero.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Mridula Garg ◽  
Pratibha Manohar ◽  
Shyam L. Kalla

We use generalized differential transform method (GDTM) to derive the solution of space-time fractional telegraph equation in closed form. The space and time fractional derivatives are considered in Caputo sense and the solution is obtained in terms of Mittag-Leffler functions.


Author(s):  
Ahmet Yildirim ◽  
Ahmet Gökdogan ◽  
Mehmet Merdan

In this paper, approximate analytical solution of biochemical reaction model is used by the multi-step differential transform method (MsDTM) based on classical differential transformation method (DTM). Numerical results are compared to those obtained by the fourth-order Runge-Kutta method to illustrate the preciseness and effectiveness of the proposed method. Results are given explicit and graphical form.


Sign in / Sign up

Export Citation Format

Share Document