scholarly journals Computational Elucidation of Structural Basis for Ligand Binding withLeishmania donovaniAdenosine Kinase

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Rajiv K. Kar ◽  
Md. Yousuf Ansari ◽  
Priyanka Suryadevara ◽  
Bikash R. Sahoo ◽  
Ganesh C. Sahoo ◽  
...  

Enzyme adenosine kinase is responsible for phosphorylation of adenosine to AMP and is crucial for parasites which are purine auxotrophs. The present study describes development of robust homology model ofLeishmania donovaniadenosine kinase to forecast interaction phenomenon with inhibitory molecules using structure-based drug designing strategy. Docking calculation using reported organic small molecules and natural products revealed key active site residues such as Arg131 and Asp16 for ligand binding, which is consistent with previous studies. Molecular dynamics simulation of ligand protein complex revealed the importance of hydrogen bonding with active site residues and solvent molecules, which may be crucial for successful development of drug candidates. Precise role of Phe168 residue in the active site was elucidated in this report that provided stability to ligand-protein complex via aromatic-πcontacts. Overall, the present study is believed to provide valuable information to design a new compound with improved activity for antileishmanial therapeutics development.

2014 ◽  
Vol 70 (a1) ◽  
pp. C437-C437
Author(s):  
Aruna Bitra ◽  
Ruchi Anand

Guanine deaminases (GDs) are important enzymes involved in both purine metabolism and nucleotide anabolism pathways. Here we present the molecular and catalytic mechanism of NE0047 and use the information obtained to engineer specific enzyme activities. NE0047 from Nitrosomonas europaea was found to be a high fidelity guanine deaminase (catalytic efficiency of 1.2 × 105 M–1 s–1). However; it exhibited secondary activity towards the structurally non-analogous triazine based compound ammeline. The X-ray structure of NE0047 in the presence of the substrate analogue 8-azaguanine help establish that the enzyme exists as a biological dimer and both the proper closure of the C-terminal loop and cross talk via the dimeric interface is crucial for conferring catalytic activity. It was further ascertained that the highly conserved active site residues Glu79 and Glu143 facilitate the deamination reaction by serving as proton shuttles. Moreover, to understand the structural basis of dual substrate specificity, X-ray structures of NE0047 in complex with a series of nucleobase analogs, nucleosides and substrate ammeline were determined. The crystal structures demonstrated that any substitutions in the parent substrates results in the rearrangement of the ligand in a catalytically unfavorable orientation and also impede the closure of catalytically important loop, thereby abrogating activity. However, ammeline was able to adopt a catalytically favorable orientation which, also allowed for proper loop closure. Based on the above knowledge of the crystal structures and the catalytic mechanism, the active site was subsequently engineered to fine-tune NE0047 activity. The mutated versions of the enzyme were designed so that they can function either exclusively as a GD or serve as specific ammeline deaminases. For example, mutations in the active site E143D and N66A confer the enzyme to be an unambiguous GD with no secondary activity towards ammeline. On the other hand, the N66Q mutant of NE0047 only deaminates ammeline. Additionally, a series of crystal structures of the mutant versions were solved that shed light on the structural basis of this differential selectivity.


2020 ◽  
Vol 295 (20) ◽  
pp. 6972-6982
Author(s):  
Dakshinamurthy Sivakumar ◽  
Vikash Kumar ◽  
Michael Naumann ◽  
Matthias Stein

The ovarian tumor domain (OTU) deubiquitinylating cysteine proteases OTUB1 and OTUB2 (OTU ubiquitin aldehyde binding 1 and 2) are representative members of the OTU subfamily of deubiquitinylases. Deubiquitinylation critically regulates a multitude of important cellular processes, such as apoptosis, cell signaling, and growth. Moreover, elevated OTUB expression has been observed in various cancers, including glioma, endometrial cancer, ovarian cancer, and breast cancer. Here, using molecular dynamics simulation approaches, we found that both OTUB1 and OTUB2 display a catalytic triad characteristic of proteases but differ in their configuration and protonation states. The OTUB1 protein had a prearranged catalytic site, with strong electrostatic interactions between the active-site residues His265 and Asp267. In OTUB2, however, the arrangement of the catalytic triad was different. In the absence of ubiquitin, the neutral states of the catalytic-site residues in OTUB2 were more stable, resulting in larger distances between these residues. Only upon ubiquitin binding did the catalytic triad in OTUB2 rearrange and bring the active site into a catalytically feasible state. An analysis of water access channels revealed only a few diffusion trajectories for the catalytically active form of OTUB1, whereas in OTUB2 the catalytic site was solvent-accessible, and a larger number of water molecules reached and left the binding pocket. Interestingly, in OTUB2, the catalytic residues His224 and Asn226 formed a stable hydrogen bond. We propose that the observed differences in activation kinetics, protonation states, water channels, and active-site accessibility between OTUB1 and OTUB2 may be relevant for the selective design of OTU inhibitors.


2012 ◽  
Vol 446 (1) ◽  
pp. 149-157 ◽  
Author(s):  
Marianne Schimpl ◽  
Christina L. Rush ◽  
Marie Betou ◽  
Ian M. Eggleston ◽  
Anneliese D. Recklies ◽  
...  

The chitinase-like proteins YKL-39 (chitinase 3-like-2) and YKL-40 (chitinase 3-like-1) are highly expressed in a number of human cells independent of their origin (mesenchymal, epithelial or haemapoietic). Elevated serum levels of YKL-40 have been associated with a negative outcome in a number of diseases ranging from cancer to inflammation and asthma. YKL-39 expression has been associated with osteoarthritis. However, despite the reported association with disease, the physiological or pathological role of these proteins is still very poorly understood. Although YKL-39 is homologous to the two family 18 chitinases in the human genome, it has been reported to lack any chitinase activity. In the present study, we show that human YKL-39 possesses a chitinase-like fold, but lacks key active-site residues required for catalysis. A glycan screen identified oligomers of N-acetylglucosamine as preferred binding partners. YKL-39 binds chitooligosaccharides and a newly synthesized derivative of the bisdionin chitinase-inhibitor class with micromolar affinity, through a number of conserved tryptophan residues. Strikingly, the chitinase activity of YKL-39 was recovered by reverting two non-conservative substitutions in the active site to those found in the active enzymes, suggesting that YKL-39 is a pseudo-chitinase with retention of chitinase-like ligand-binding properties.


2016 ◽  
pp. 987-993
Author(s):  
A. BAUMLOVA ◽  
J. GREGOR ◽  
E. BOURA

PI4K IIα is a critical enzyme for the maintenance of Golgi and is also known to function in the synaptic vesicles. The product of its catalytical function, phosphatidylinositol 4-phosphate (PI4P), is an important lipid molecule because it is a hallmark of the Golgi and TGN, is directly recognized by many proteins and also serves as a precursor molecule for synthesis of higher phosphoinositides. Here, we report crystal structures of PI4K IIα enzyme in the apo-state and inhibited by calcium. The apo-structure reveals a surprising rigidity of the active site residues important for catalytic activity. The structure of calcium inhibited kinase reveals how calcium locks ATP in the active site.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5053
Author(s):  
Alina K. Bakunova ◽  
Alena Yu. Nikolaeva ◽  
Tatiana V. Rakitina ◽  
Tatiana Y. Isaikina ◽  
Maria G. Khrenova ◽  
...  

Among industrially important pyridoxal-5’-phosphate (PLP)-dependent transaminases of fold type IV D-amino acid transaminases are the least studied. However, the development of cascade enzymatic processes, including the synthesis of D-amino acids, renewed interest in their study. Here, we describe the identification, biochemical and structural characterization of a new D-amino acid transaminase from Haliscomenobacter hydrossis (Halhy). The new enzyme is strictly specific towards D-amino acids and their keto analogs; it demonstrates one of the highest rates of transamination between D-glutamate and pyruvate. We obtained the crystal structure of the Halhy in the holo form with the protonated Schiff base formed by the K143 and the PLP. Structural analysis revealed a novel set of the active site residues that differ from the key residues forming the active sites of the previously studied D-amino acids transaminases. The active site of Halhy includes three arginine residues, one of which is unique among studied transaminases. We identified critical residues for the Halhy catalytic activity and suggested functions of the arginine residues based on the comparative structural analysis, mutagenesis, and molecular modeling simulations. We suggested a strong positive charge in the O-pocket and the unshaped P-pocket as a structural code for the D-amino acid specificity among transaminases of PLP fold type IV. Characteristics of Halhy complement our knowledge of the structural basis of substrate specificity of D-amino acid transaminases and the sequence-structure-function relationships in these enzymes.


Author(s):  
Akachukwu Ibezim ◽  
Mbanefo S. Madukaife ◽  
Sochi C Osigwe ◽  
Nadja Engel ◽  
Ramanathan Karuppasamy ◽  
...  

Plasmodium species that cause malaria, a disease responsible for about half a million deaths per annum despite concerted efforts to combat it. The causative agent depends on type III beta phosphatidylinositol 4-kinase (PPI4K) during the development of merozoite. PPI4K is the only clinically validated Plasmodium kinase so far and its inhibitors are effective both in vitro and in vivo. In this work, a small library of ~22 000 fragments was virtually screened using PPI4K homology model to discover potential ligands of the enzyme. 16 virtual hits were selected based on ≤ -9.0 kcal/mol binding energy cut off and were subjected to similarity and substructure searching after they had passed PAINS screening. The derivatives obtained showed improved binding energies, which ranged from -10.00 to -13.80 kcal/mol. Moreover, the topmost ranking compound 31, with interesting drug-like quality was stable within the protein’s binding cavity during the 10 ns molecular dynamics simulation period. In addition, analysis of its binding pose revealed some unique binding interactions with PPI4K active site residues as the basis for the observed improved binding affinity. Overall, compound 31 appears to be a viable starting point for the development of PPI4K inhibitors with antimalarial activity.


1994 ◽  
Vol 298 (2) ◽  
pp. 295-301 ◽  
Author(s):  
M Ghosh ◽  
A K Datta

The presence of arginine at the active site of Leishmania donovani adenosine kinase was studied by chemical modification, followed by the characterization of the modified enzyme. The arginine-specific reagents phenylglyoxal (PGO), butane-2,3-dione and cyclohexane-1,2-dione all irreversibly inactivated the enzyme. In contrast, adenosine kinase from hamster liver was insensitive to these reagents. The inactivation of the enzyme by PGO followed pseudo-first-order kinetics, with a second-order rate constant of 39.2 min-1.M-1. Correlation between the stoichiometry of PGO modification and extent of inactivation indicated that modification of a single residue per molecule suffices for the loss of activity. Reactivity of the essential arginine residue towards PGO was affected by the presence of adenosine (Ado) and other competing alternative substrates, consistent with an arginine residue located proximal to the Ado-binding site. The enzyme showed an intrinsic fluorescence with an emission maximum at 340 nm when excited at 295 nm. The protein fluorescence was partially quenched on addition of Ado. PGO modification also led to significant quenching of the fluorescence. However, the fluorescence of the Ado-protected enzyme, which displayed 82% of the original activity after PGO treatment, was retained. The kinetic analyses of the partially modified enzyme showed an increase in the Km for Ado from 14 to 55 microM. Furthermore, the inability of the modified enzyme to bind to 5′-AMP-Sepharose 4B affinity column provided additional evidence that modification is attended by decrease in affinity of the enzyme for Ado. The results are consistent with the interpretation that modification of the active-site arginine residue affects activity by interfering with the binding of the substrate to the active site.


2019 ◽  
Vol 25 (12) ◽  
pp. 1392-1401
Author(s):  
Pritika Ramharack ◽  
Nikita Devnarain ◽  
Letitia Shunmugam ◽  
Mahmoud E.S. Soliman

Background: The recent Nipah virus (NiV) outbreak in India has caused a state of chaos, with potential to become the next international pandemic. There is still a great deal to learn about NiV for the development of a potent treatment against it. The NiV non-structural proteins play important roles in the lifecycle of the virus, with the RNA-dependent RNA-polymerase (RdRp) being a vital component in viral replication. In this study, we not only provide a comprehensive overview of all the literature concerning NiV, we also propose a model of the NiV RdRp and screen for potential inhibitors of the viral enzyme. Objectives: In this study, computational tools were utilized in the design of a NiV RdRp homology model. The active site of RdRp was then identified and potential inhibitors of the protein were discovered with the use of pharmacophore-based screening. Methods: In this study, computational tools were utilized in the design of a NiV RdRp homology model. The active site of RdRp was then identified and potential inhibitors of the protein were discovered with the use of pharmacophore-based screening. Results: Ramachandran plot analysis revealed a favourable model. Upon binding of nucleoside analog, 4’- Azidocytidine, active site residues Trp1714 and Ser1713 took part in stabilizing hydrogen bonds, while Thr1716, Ser1478, Ser1476 and Glu1465 contributed to hydrophobic interactions. Pharmacophore based screening yielded 18 hits, of which ZINC00085930 demonstrated the most optimal binding energy (-8.1 kcal/mol), validating its use for further analysis as an inhibitor of NiV. Conclusion: In this study we provide a critical guide, elucidating on the in silico requirements of the drug design and discovery process against NiV. This material lays a foundation for future research into the design and development of drugs that inhibit NiV.


Sign in / Sign up

Export Citation Format

Share Document