scholarly journals A Spectral Solenoidal-Galerkin Method for Rotating Thermal Convection between Rigid Plates

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Cihan Yıldırım ◽  
Durmuş Yarımpabuç ◽  
Hakan I. Tarman

The problem of thermal convection between rotating rigid plates under the influence of gravity is treated numerically. The approach uses solenoidal basis functions and their duals which are divergence free. The representation in terms of the solenoidal bases provides ease in the implementation by a reduction in the number of dependent variables and equations. A Galerkin procedure onto the dual solenoidal bases is utilized in order to reduce the governing system of partial differential equations to a system of ordinary differential equations for subsequent parametric study. The Galerkin procedure results in the elimination of the pressure and is facilitated by the use of Fourier-Legendre spectral representation. Numerical experiments on the linear stability of rotating thermal convection and nonlinear simulations are performed and satisfactorily compared with the literature.

2021 ◽  
Vol 24 (3) ◽  
pp. 775-817
Author(s):  
Hassan Khosravian-Arab ◽  
Mohammad Reza Eslahchi

Abstract This paper presents two new classes of Müntz functions which are called Jacobi-Müntz functions of the first and second types. These newly generated functions satisfy in two self-adjoint fractional Sturm-Liouville problems and thus they have some spectral properties such as: orthogonality, completeness, three-term recurrence relations and so on. With respect to these functions two new orthogonal projections and their error bounds are derived. Also, two new Müntz type quadrature rules are introduced. As two applications of these basis functions some fractional ordinary and partial differential equations are considered and numerical results are given.


Author(s):  
T. N. Krishnamurti ◽  
H. S. Bedi ◽  
V. M. Hardiker

If one takes a closed system of the basic meteorological equations and introduces within this system a finite expansion of the dependent variables using functions such as double Fourier or Fourier-Legendre functions in space, then the use of the orthogonality properties of these spatial functions enables one to obtain a set of coupled nonlinear ordinary differential equations for the coefficients of these functions. These coefficients are functions of time and the vertical coordinate, since the horizontal spatial dependence has been removed by taking a Fourier or a Fourier-Legendre transform of the equations. The coupled nonlinear ordinary differential equations for the coefficients are usually solved by simple time-differencing and vertical finite-differencing schemes. The mapping of the solution requires the multiplication of the coefficients with the spatial functions summed over a set of chosen finite spatial basis functions. This is what defines spectral modeling. Meteorological application of the spectral method was initiated by Silberman (1954), who studied the nondivergent barotropic vorticity equation in the spherical coordinate system using the spectral technique. In its earlier days, the spectral method was particularly suitable for low-resolution simple models. The equations of these simple models involved nonlinear terms evaluated at each time step. Evaluation of the nonlinear terms was performed using the interaction coefficient method and thus required large memory allocations, which was an undesirable proposition. However, with the introduction of the transform method, developed independently by Eliasen et al. (1970) and Orszag (1970), the method for evaluation of these nonlinear terms changed completely. This transform method also made it feasible to include nonadiabatic effects in the model equations. For the past couple of decades, the spectral method has be come an increasingly popular technique for studies of general circulation and numerical weather prediction at the operational and research centers. This method forms the basis for spectral modeling, and it is easy to understand if the reader has some background in linear algebra. We have a set of linearly independent functions θi(x), which are called the basis functions. The dependent variables of the problem are represented by a finite sum of these basis functions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


Author(s):  
Adrien Laurent ◽  
Gilles Vilmart

AbstractWe derive a new methodology for the construction of high-order integrators for sampling the invariant measure of ergodic stochastic differential equations with dynamics constrained on a manifold. We obtain the order conditions for sampling the invariant measure for a class of Runge–Kutta methods applied to the constrained overdamped Langevin equation. The analysis is valid for arbitrarily high order and relies on an extension of the exotic aromatic Butcher-series formalism. To illustrate the methodology, a method of order two is introduced, and numerical experiments on the sphere, the torus and the special linear group confirm the theoretical findings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. Hassani ◽  
J. A. Tenreiro Machado ◽  
Z. Avazzadeh ◽  
E. Safari ◽  
S. Mehrabi

AbstractIn this article, a fractional order breast cancer competition model (F-BCCM) under the Caputo fractional derivative is analyzed. A new set of basis functions, namely the generalized shifted Legendre polynomials, is proposed to deal with the solutions of F-BCCM. The F-BCCM describes the dynamics involving a variety of cancer factors, such as the stem, tumor and healthy cells, as well as the effects of excess estrogen and the body’s natural immune response on the cell populations. After combining the operational matrices with the Lagrange multipliers technique we obtain an optimization method for solving the F-BCCM whose convergence is investigated. Several examples show that a few number of basis functions lead to the satisfactory results. In fact, numerical experiments not only confirm the accuracy but also the practicability and computational efficiency of the devised technique.


2016 ◽  
Vol 9 (4) ◽  
pp. 619-639 ◽  
Author(s):  
Zhong-Qing Wang ◽  
Jun Mu

AbstractWe introduce a multiple interval Chebyshev-Gauss-Lobatto spectral collocation method for the initial value problems of the nonlinear ordinary differential equations (ODES). This method is easy to implement and possesses the high order accuracy. In addition, it is very stable and suitable for long time calculations. We also obtain thehp-version bound on the numerical error of the multiple interval collocation method underH1-norm. Numerical experiments confirm the theoretical expectations.


2013 ◽  
Vol 431 ◽  
pp. 198-201
Author(s):  
Jing Zhu ◽  
Lian Cun Zheng

This paper presents a theoretical analysis for the incompressible MHD stagnation-point flows of a Non-Newtonian Fluid over stretching sheets.The governing system of partial differential equations is first transformed into a system of dimensionless ordinary differential equations. By using the homotopy analysis method, a convergent series solution is obtained. The reliability and efficiency of series solutions are illustrated by good agreement with numerical results in the literature.Besides, the effects of the power-law indexthe magnetic field parameter and velocity ratio parameter on the flow are investigated.


Sign in / Sign up

Export Citation Format

Share Document