scholarly journals Investigation into the Dynamics and Control of an Underwater Vehicle-Manipulator System

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Mohan Santhakumar

This study addresses the detailed modeling and simulation of the dynamic coupling between an underwater vehicle and manipulator system. The dynamic coupling effects due to damping, restoring, and inertial effects of an underwater manipulator mounted on an autonomous underwater vehicle (AUV) are analyzed by considering the actuator and sensor characteristics. A model reference control (MRC) scheme is proposed for the underwater vehicle-manipulator system (UVMS). The effectiveness of the proposed control scheme is demonstrated using numerical simulations along with comparative study between conventional proportional-integral-derivative (PID) control. The robustness of the proposed control scheme is also illustrated in the presence of external disturbances and parameter uncertainties.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Zool H. Ismail ◽  
Matthew W. Dunnigan

A conventional region control technique cannot meet the demands for an accurate tracking performance in view of its inability to accommodate highly nonlinear system dynamics, imprecise hydrodynamic coefficients, and external disturbances. In this paper, a robust technique is presented for an Autonomous Underwater Vehicle (AUV) with region tracking function. Within this control scheme, nonlinearH∞and region based control schemes are used. A Lyapunov-like function is presented for stability analysis of the proposed control law. Numerical simulations are presented to demonstrate the performance of the proposed tracking control of the AUV. It is shown that the proposed control law is robust against parameter uncertainties, external disturbances, and nonlinearities and it leads to uniform ultimate boundedness of the region tracking error.


Author(s):  
Mohan Santhakumar ◽  
Jinwhan Kim

This paper proposes a new tracking controller for autonomous underwater vehicle-manipulator systems (UVMSs) using the concept of model reference adaptive control. It also addresses the detailed modeling and simulation of the dynamic coupling between an autonomous underwater vehicle and manipulator system based on Newton–Euler formulation scheme. The proposed adaptation control algorithm is used to estimate the unknown parameters online and compensate for the rest of the system dynamics. Specifically, the influence of the unknown manipulator mass on the control performance is indirectly captured by means of the adaptive control scheme. The effectiveness and robustness of the proposed control scheme are demonstrated using numerical simulations.


2021 ◽  
Vol 11 (6) ◽  
pp. 2797
Author(s):  
Filiberto Muñoz ◽  
Jorge S. Cervantes-Rojas ◽  
Jose M. Valdovinos ◽  
Omar Sandre-Hernández ◽  
Sergio Salazar ◽  
...  

This research presents a way to improve the autonomous maneuvering capability of a four-degrees-of-freedom (4DOF) autonomous underwater vehicle (AUV) to perform trajectory tracking tasks in a disturbed underwater environment. This study considers four second-order input-affine nonlinear equations for the translational (x,y,z) and rotational (heading) dynamics of a real AUV subject to hydrodynamic parameter uncertainties (added mass and damping coefficients), unknown damping dynamics, and external disturbances. We proposed an identification-control scheme for each dynamic named Dynamic Neural Control System (DNCS) as a combination of an adaptive neural controller based on nonparametric identification of the effect of unknown dynamics and external disturbances, and on parametric estimation of the added mass dependent input gain. Several numerical simulations validate the satisfactory performance of the proposed DNCS tracking reference trajectories in comparison with a conventional feedback controller with no adaptive compensation. Some graphics showing dynamic approximation of the lumped disturbance as well as estimation of the parametric uncertainty are depicted, validating effective operation of the proposed DNCS when the system is almost completely unknown.


2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
M. Santhakumar

This paper investigates the performance of a new robust tracking control on the basis of proportional-derivative observer-based backstepping control applied on a three degrees of freedom underwater spatial manipulator. Hydrodynamic forces and moments such as added mass effects, damping effects, and restoring effects can be large and have a significant effect on the dynamic performance of the underwater manipulator. In this paper, a detailed closed-form dynamic model is derived using the recursive Newton-Euler algorithm, which extended to include the most significant hydrodynamic effects. In the dynamic modeling and simulation, the actuator and sensor dynamics of the system are also incorporated. The effectiveness of the proposed control scheme is demonstrated using numerical simulations along with comparative study between conventional proportional-integral-derivative (PID) controls. The results are confirmed that the actual states of joint trajectories of the underwater manipulator asymptotically follow the desired trajectories defined by the reference model even though the system is subjected to external disturbances and parameter uncertainties. Also, stability of the proposed (model reference control) control scheme is analyzed.


2020 ◽  
Vol 17 (2) ◽  
pp. 172988142090963
Author(s):  
Tianqi Xie ◽  
Ye Li ◽  
Yanqing Jiang ◽  
Li An ◽  
Haowei Wu

In this article, the three-dimensional trajectory tracking control of an autonomous underwater vehicle is addressed. The vehicle is assumed to be underactuated and the system parameters and the external disturbances are unknown. First, the five degrees of freedom kinematics and dynamics model of underactuated autonomous underwater vehicle are acquired. Following this, reduced-order linear extended state observers are designed to estimate and compensate for the uncertainties that exist in the model and the external disturbances. A backstepping active disturbance rejection control method is designed with the help of a time-varying barrier Lyapunov function to constrain the position tracking error. Furthermore, the controller system can be proved to be stable by employing the Lyapunov stability theory. Finally, the simulation and comparative analyses demonstrate the usefulness and robustness of the proposed controller in the presence of internal parameter uncertainties and external time-varying disturbances.


2011 ◽  
Vol 38 (17-18) ◽  
pp. 2270-2280 ◽  
Author(s):  
Zool H. Ismail ◽  
Matthew W. Dunnigan

Author(s):  
Sadeq Yaqubi ◽  
Morteza Dardel ◽  
Hamidreza Mohammadi Daniali

Dynamical behaviors and control of planar crank–slider mechanism considering the effects of joint clearance and link flexibility are studied. A control scheme for maintaining continuous contact is proposed. It was observed that using one actuator for control scheme might cause the actuator to reach its saturation limit, a problem that was bypassed by installing an additional actuator on connecting rod. In one actuator case, only continuous contact can be obtained, while with the aid of two actuators, point contact can be achieved. Great improvements in the performance of mechanism and reduction of vibrations are observed in the case of using an additional actuator.


2009 ◽  
Vol 43 (2) ◽  
pp. 33-47 ◽  
Author(s):  
Hunter C. Brown ◽  
Ayoung Kim ◽  
Ryan M. Eustice

AbstractThis article provides a general overview of the autonomous underwater vehicle (AUV) research thrusts being pursued within the Perceptual Robotics Laboratory (PeRL) at the University of Michigan. Founded in 2007, PeRL's research centers on improving AUV autonomy via algorithmic advancements in environmentally based perceptual feedback for real-time mapping, navigation, and control. Our three major research areas are (1) real-time visual simultaneous localization and mapping (SLAM), (2) cooperative multi-vehicle navigation, and (3) perception-driven control. Pursuant to these research objectives, PeRL has developed a new multi-AUV SLAM testbed based upon a modified Ocean-Server Iver2 AUV platform. PeRL upgraded the vehicles with additional navigation and perceptual sensors for underwater SLAM research. In this article, we detail our testbed development, provide an overview of our major research thrusts, and put into context how our modified AUV testbed enables experimental real-world validation of these algorithms.


Sign in / Sign up

Export Citation Format

Share Document