scholarly journals The Relationship between Serum Osteocalcin Concentration and Glucose Metabolism in Patients with Type 2 Diabetes Mellitus

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Qingqing Wang ◽  
Beibei Zhang ◽  
Yulan Xu ◽  
Hongdi Xu ◽  
Nan Zhang

To study the correlations between serum osteocalcin and glucose metabolism in patients with type 2 diabetes, 66 cases were collected to determine total osteocalcin, undercarboxylated osteocalcin, fasting blood glucose, fasting insulin, and HbA1c. Osteocalcin concentrations were compared between groups of different levels of HbA1c, and parameters of glucose metabolism were compared between groups of different levels of total osteocalcin and undercarboxylated osteocalcin. The relationship between osteocalcin and parameters of glucose metabolism was also analyzed. We found that the total osteocalcin concentration of high-HbA1c group was significantly lower than that of low-HbA1c group. The fasting blood glucose of low-total-osteocalcin group was significantly higher than that of high-total-osteocalcin group in male participants, while the fasting blood glucose of low-undercarboxylated-osteocalcin group was significantly higher than that of high-undercarboxylated-osteocalcin group in all participants and in male participants. Total osteocalcin was inversely correlated with HbA1c, and undercarboxylated osteocalcin was inversely correlated with fasting blood glucose. However, no significant correlation was found between osteocalcin and HOMA-IR. Total osteocalcin was an independent related factor of HbA1c level. In summary, decreased serum total osteocalcin and undercarboxylated osteocalcin are closely related to the exacerbation of glucose metabolism disorder but have no relations with insulin resistance.

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Xiaofei Huang ◽  
Pan Weng ◽  
Huixin Zhang ◽  
Yingli Lu

Objective. As a complicated symbiotic system, intestinal flora is reported closely related to the development of type 2 diabetes recently. Sleeve gastrectomy is one of the approaches of bariatric surgery and could improve blood glucose control in type 2 diabetes patients. This study was to explore the relationship between remodeled intestinal flora and glucose metabolism in diabetic rats.Methods. 20 male diabetic rats were operated; 10 of them underwent sleeve gastrectomy, and 10 of them underwent sham operation. Meanwhile 10 male normal rats underwent sleeve gastrectomy as control. The animals’ weight and FBG had been measured. The composition changes of intestinal flora were detected by 16S rDNA sequence analysis.Results. In diabetic rats, weight and fasting blood glucose decreased significantly after sleeve gastrectomy. However, there was no significant change for weight and blood glucose in normal rats after operation. The intestinal flora of diabetic rats reduced in the proportion of Firmicutes and increased in the proportion of Bacteroidetes after sleeve gastrectomy.Conclusion. The change of dominant microorganisms in intestinal flora might play an important role in the glucose metabolism.


Epigenomics ◽  
2021 ◽  
Author(s):  
Marwa Matboli ◽  
Doaa Ibrahim ◽  
Amany H Hasanin ◽  
Mohamed Kamel Hassan ◽  
Eman K Habib ◽  
...  

Aim: To assess isorhamnetin efficacy for diabetic kidney disease in a Type 2 diabetes mellitus rat model, through investigating its effect at the epigenetic, mRNA and protein levels. Materials & methods: Type 2 diabetes mellitus was induced in rats by streptozotocin and high-fat diet. Rats were treated with isorhamnetin (50 mg/kg/d) for 4 or 8 weeks. Fasting blood glucose, renal and lipid profiles were evaluated. Renal tissues were examined by light and electron microscopy. Autophagy genes ( FYCO1, ULK, TECPR1 and  WIPI2) and miR-15b, miR-34a and miR-633 were assessed by qRT-PCR, and LC3A/B by immunoblotting. Results: Isorhamnetin improved fasting blood glucose, renal and lipid profiles with increased autophagosomes in renal tissues. It suppressed miRNA regulation of autophagy genes Conclusion: We propose a molecular mechanism for the isorhamnetin renoprotective effect by modulation of autophagy epigenetic regulators.


2021 ◽  
Vol 22 (7) ◽  
pp. 3566
Author(s):  
Chae Bin Lee ◽  
Soon Uk Chae ◽  
Seong Jun Jo ◽  
Ui Min Jerng ◽  
Soo Kyung Bae

Metformin is the first-line pharmacotherapy for treating type 2 diabetes mellitus (T2DM); however, its mechanism of modulating glucose metabolism is elusive. Recent advances have identified the gut as a potential target of metformin. As patients with metabolic disorders exhibit dysbiosis, the gut microbiome has garnered interest as a potential target for metabolic disease. Henceforth, studies have focused on unraveling the relationship of metabolic disorders with the human gut microbiome. According to various metagenome studies, gut dysbiosis is evident in T2DM patients. Besides this, alterations in the gut microbiome were also observed in the metformin-treated T2DM patients compared to the non-treated T2DM patients. Thus, several studies on rodents have suggested potential mechanisms interacting with the gut microbiome, including regulation of glucose metabolism, an increase in short-chain fatty acids, strengthening intestinal permeability against lipopolysaccharides, modulating the immune response, and interaction with bile acids. Furthermore, human studies have demonstrated evidence substantiating the hypotheses based on rodent studies. This review discusses the current knowledge of how metformin modulates T2DM with respect to the gut microbiome and discusses the prospect of harnessing this mechanism in treating T2DM.


2020 ◽  
Vol 45 (4) ◽  
pp. 397-404
Author(s):  
Tugba Gurpinar Çavuşoğlu ◽  
Ertan Darıverenli ◽  
Kamil Vural ◽  
Nuran Ekerbicer ◽  
Cevval Ulman ◽  
...  

AbstractObjectivesType 2 diabetes is a common metabolic disease and anxiety disorders are very common among diabetics. Buspirone is used in the treatment of anxiety, also having blood glucose-lowering effects. The aim of the study was to investigate the effects of buspirone on the glucose and lipid metabolism as well as vascular function in type 2 diabetic rats.MethodsA type 2-diabetic model was induced through a high-fat diet for eight weeks followed by the administration of low-dose streptozotocin (35 mg/kg, intraperitoneal) in rats. Buspirone was given at two different doses (1.5 mg/kg/d and 5 mg/kg/d) and combined with metformin (300 mg/kg/d). The fasting glucose and insulin levels, lipid profile were analyzed, and vascular response measured from the thoracic aorta was also evaluated.ResultsBoth doses of buspirone caused a significant improvement in fasting blood glucose levels. In particular, the buspirone treatment, combined with metformin, improved endothelial dysfunction and was found to be correlated with decreased nitrate/nitrite levels.ConclusionsBuspirone may be effective in the treatment of type 2 diabetes, either alone or in combination with other treatments, particularly in terms of endothelial dysfunction, inflammation and impaired blood glucose, and insulin levels.


Sign in / Sign up

Export Citation Format

Share Document