scholarly journals Wide-Gap p-μc-Si1-xOx:H Films and Their Application to Amorphous Silicon Solar Cells

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Taweewat Krajangsang ◽  
Sorapong Inthisang ◽  
Aswin Hongsingthong ◽  
Amornrat Limmanee ◽  
Jaran Sritharathikhun ◽  
...  

Optimization of p-type hydrogenated microcrystalline silicon oxide thin films (p-μc-Si1-xOx:H) by very high frequency plasma enhanced chemical vapor deposition 40 MHz method for use as a p-layer of a-Si:H solar cells was performed. The properties of p-μc-Si1-xOx:H films were characterized by conductivity, Raman scattering spectroscopy, and spectroscopic ellipsometry. The wide optical band gap p-μc-Si1-xOx:H films were optimized by CO2/SiH4ratio and H2/SiH4dilution. Besides, the effects of wide-gap p-μc-Si1-xOx:H layer on the performance of a-Si:H solar cells with various optical band gaps of p-layer were also investigated. Furthermore, improvements of open circuit voltage, short circuit current, and performance of the solar cells by using the effective wide-gap p-μc-Si1-xOx:H were observed in this study. These results indicate that wide-gap p-μc-Si1-xOx:H is promising to use as window layer in a-Si:H solar cells.

2012 ◽  
Vol 1426 ◽  
pp. 105-110
Author(s):  
Bill Nemeth ◽  
Xiaodan Zhang ◽  
Yanfa Yan ◽  
Qi Wang

ABSTRACTWe study the effect of the spacing between electrodes in very high frequency plasma enhanced chemical vapor deposition on the properties of microcrystalline silicon films and their related n-i-psolar cells. We vary the spacing from 0.2 to 1.0 cm to deposit microcrystalline silicon at 67.8 MHz while maintaining other growth parameters. The spacing between the electrodes significantly changes the plasma conditions, which govern film precursor chemistry as well as introduce etching and ion bombardment to the film; thereby, influencing nucleation and growth of the microcrystalline Si films. The resulting films were characterized by UV-Vis spectrometry, atomic force microscopy, X-ray diffraction, and transmission electron microscopy. We found that deposition rate decreases, while surface roughness and short circuit current density increase with smaller spacing.


1995 ◽  
Vol 377 ◽  
Author(s):  
Jae-Hee Lee ◽  
Jae-Seog Koh ◽  
Jin Jang

ABSTRACTHydrogenated amorphous silicon (a-Si:H) solar cells are prepared by plasma enhanced chemical vapor deposition (PECVD). Before quenching the solar cells, the short circuit current (Jsc), open circuit voltage (Voc), fill factor (F. F.) and conversion efficiency (η) are 17.79 mA/cm2, 0.79 V, 53.29, and 7.49 %, respectively. After thermal quenchine the solar cells from 200°C, Jsc, Voc, F. F., and η are 18.64 mA/cm2, 0.8 V, 53.79, and 8.02 %, respectively. We investigated the thermal equilibrium processes of each P, I, and N layers. Also, we obtained the dark current-voltage characteristics of a-Si:H solar cells before and after quenching. We analyze the results in terms of the change of the internal electric field in a-Si:H solar cells, caused by the shift of the Fermi level of P layer toward valence band.


2011 ◽  
Vol 1321 ◽  
Author(s):  
Amornrat Limmanee ◽  
Songkiate Kittisontirak ◽  
Channarong Piromjit ◽  
Jaran Sritharathikhun ◽  
Kobsak Sriprapha

ABSTRACTWe have prepared n-type hydrogenated microcrystalline silicon oxide films (n μc-SiO:H) and investigated their structural, electrical and optical properties. Raman spectra shows that, amorphous phase of the n μc-SiO:H films tends to increase when the CO2/SiH4 ratio increases from 0 to 0.28 resulting in a reduction of the crystalline volume fraction (Xc) from 70 to 12%. Optical bandgap (E04) becomes gradually wider while dark conductivity and refractive index (n) continuously drop with increasing CO2/SiH4 ratio. The n μc-SiO:H films have been practically applied as a n layer in top cell of a-SiO:H/μc-Si:H micromorph silicon solar cells. We found that, open circuit voltage (Voc) and fill factor (FF) of the cells gradually increased, while short circuit current density (Jsc) remained almost the same value with increasing CO2/SiH4 ratio for n top layer deposition up to 0.23. The highest initial cell efficiency of 10.7% is achieved at the CO2/SiH4 ratio of 0.23. The enhancement of the Voc is supposed to be due to a reduction of reverse bias at sub cell connection (n top/p bottom interface). An increase of shunt resistance (Rsh) which is caused by a better tunnel recombination junction contributes to the improvement in the FF. Quantum efficiency (QE) results indicate no difference between the cells using n top μc-SiO:H and the cells with n top μc-Si:H layers. These results reveal that, the n μc-SiO:H films in this study do not work as an intermediate reflector to enhance light scattering inside the solar cells, but mainly play a key role to allow ohmic and low resistive electrical connection between the two adjacent cells in the micromorph silicon solar cells.


2014 ◽  
Vol 783-786 ◽  
pp. 2022-2027 ◽  
Author(s):  
Masaharu Shiratani ◽  
Giichiro Uchida ◽  
Hyun Woong Seo ◽  
Daiki Ichida ◽  
Kazunori Koga ◽  
...  

We report characteristics of quantum dot (QD) sensitized solar cells using Si nanoparticles and Ge nanoparticles. Si nanoparticles were synthesized by multi-hollow discharge plasma chemical vapor deposition, whereas Ge nanoparticles were done by a radio frequency magnetron sputtering using Ar+H2under high pressure conditions. The electrical power generation from Si QDs and Ge QDs was confirmed. Si QD sensitized solar cells show an efficiency of 0.024%, fill factor of 0.32, short-circuit current of 0.75 mA/cm2and open-circuit voltage of 0.10 V, while Ge QD sensitized solar cells show an efficiency of 0.036%, fill factor of 0.38, short-circuit current of 0.64 mA/cm2and open-circuit voltage of 0.15 V.


Author(s):  
Omar Ghanim Ghazal ◽  
Ahmed Waleed Kasim ◽  
Nabeel Zuhair Tawfeeq

Cadmium telluride (CdTe)/cadmium sulfide (CdS) solar cell is a promising candidate for photovoltaic (PV) energy production, as fabrication costs are compared by silicon wafers. We include an analysis of CdTe/CdS solar cells while optimizing structural parameters. Solar cell capacitance simulator (SCAPS)-1D 3.3 software is used to analyze and develop energy-efficient. The impact of operating thermal efficiency on solar cells is highlighted in this article to explore the temperature dependence. PV parameters were calculated in the different absorber, buffer, and window layer thicknesses (CdTe, CdS, and SnO2). The effect of the thicknesses of the layers, and the fundamental characteristics of open-circuit voltage, fill factor, short circuit current, and solar energy conversion efficiency were studied. The results showed the thickness of the absorber and buffer layers could be optimized. The temperature had a major impact on the CdTe/CdS solar cells as well. The optimized solar cell has an efficiency performance of >14% when exposed to the AM1.5 G spectrum. CdTe 3000 nm, CdS 50 nm, SnO2 500 nm, and (at) T 300k were the I-V characteristics gave the best conversion open circuit voltage (Voc)=0.8317 volts, short circuit current density (Jsc)=23.15 mA/cm2, fill factor (FF)%=77.48, and efficiency (η)%=14.73. The results can be used to provide important guidance for future work on multi-junction solar cell design.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Jaran Sritharathikhun ◽  
Taweewat Krajangsang ◽  
Apichan Moollakorn ◽  
Sorapong Inthisang ◽  
Amornrat Limmanee ◽  
...  

This paper reports the preparation of wide gap p-type hydrogenated microcrystalline silicon oxide (p-μc-SiO:H) films using a 40 MHz very high frequency plasma enhanced chemical vapor deposition technique. The reported work focused on the effects of the CO2/SiH4ratio on the properties of p-μc-SiO:H films and the effectiveness of the films as an emitter layer of crystalline silicon heterojunction (c-Si-HJ) solar cells. A p-μc-SiO:H film with a wide optical band gap (E04), 2.1 eV, can be obtained by increasing the CO2/SiH4ratio; however, the tradeoff betweenE04and dark conductivity must be considered. The CO2/SiH4ratio of the p-μc-SiO:H emitter layer also significantly affects the performance of the solar cells. Compared to the cell using p-μc-Si:H (CO2/SiH4= 0), the cell with the p-μc-SiO:H emitter layer performs more efficiently. We have achieved the highest efficiency of 18.3% with an open-circuit voltage (Voc) of 692 mV from the cell using the p-μc-SiO:H layer. The enhancement in theVocand the efficiency of the solar cells verified the potential of the p-μc-SiO:H films for use as the emitter layer in c-Si-HJ solar cells.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 479-482 ◽  
Author(s):  
G. Papadopoulos ◽  
L. P. Boivin ◽  
N. G. Tarr

Solar cells with emitters consisting of a very thin (<20 nm) layer of silicon deposited in the polycrystalline phase overlaid with a thicker (≈100 nm) layer of recrystallized amorphous material were fabricated and characterized. Both layers were formed by low-pressure chemical vapor deposition with heavy in situ phosphorus doping. The highest temperature used in processing was 650 °C. Short-circuit current densities (Jsc) of 30 mA cm−2 combined with fill factors close to 0.8 were achieved under simulated 100 mW cm−2 AM1.5 illumination. Open-circuit voltages as high as 669 mV at 28 °C were obtained for cells formed on high-quality 0.1 Ω cm float zone substrates when Jsc was set to 32 mA cm−2.


Author(s):  
С.А. Минтаиров ◽  
В.М. Емельянов ◽  
Н.А. Калюжный ◽  
М.З. Шварц ◽  
В.М. Андреев

An experimental and theoretical study of the spectral characteristics of the Ga(In)As subcell of the GaInP/Ga(In)As/Ge triple-junction solar cells has been carried out. It is shown that the use of a wide-gap “window” layer with an optimized thickness (Ga0.51In0.49P - 100 nm, Al0.4Ga0.6As - 110 nm, Al0.8Ga0.2As - 115 nm) for the Ga(In)As subcell allows increasing its photocurrent by about 0.5 mA/cm2, replacing the material of the back potential barrier of the GaInP subcell from Al0.53In0.47P to p+-Ga0.51In0.49P or AlGaAs allows increasing the short circuit current of Ga(In)As subcell by about 0.8 mA/cm2, and the use of the wide-bandgap Ga0.51In0.49P n++-layer in the tunnel diode instead of n++-GaAs increases the photocurrent by about 1 mA/cm2.


2011 ◽  
Vol 1324 ◽  
Author(s):  
Jan Keller ◽  
Martin Knipper ◽  
Jürgen Parisi ◽  
Ingo Riedel ◽  
Thomas Dalibor ◽  
...  

ABSTRACTWe studied the thickness variation of equally doped ZnO:Al films used as conductive window layer in Cu(In,Ga)(Se,S)2 (CIGSSe) thin film solar cells. The IV-characteristics of solar cells with window layer thickness of d1=200nm exhibit a strong enhancement of the short-circuit current density JSC (ΔJSC = 3mA/cm2) as compared to samples with module-like ZnO:Al-film thickness (d2=1200nm). Accordingly, the quantum efficiency reveals the spectral regimes where the JSC-gain occurs. Moreover, current-voltage measurements reveal that the cells with thicker ZnO:Al exhibit slightly decreased open circuit voltage VOC. This finding can be assigned to a decreased net-doping density NA, which appears to be introduced by additional heat flux during the longer process time required for deposition of thicker ZnO:Al films. However, the improved efficiency of solar cells with thinner window layer comes along with an increase of the series resistance (RS) by almost a factor of 2, which will have consequences for the series connection of elements in a module. XRD-diffractograms and SEM cross-section imaging suggest that the enhanced RS in cells with thin ZnO:Al is not exclusively related to the thickness but is also due to a reduced (002)-texture and an elongated lateral charge carrier pathway.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Sign in / Sign up

Export Citation Format

Share Document