scholarly journals Увеличение фототока Ga(In)As-субэлемента в многопереходных солнечных элементах GaInP/Ga(In)As/Ge

Author(s):  
С.А. Минтаиров ◽  
В.М. Емельянов ◽  
Н.А. Калюжный ◽  
М.З. Шварц ◽  
В.М. Андреев

An experimental and theoretical study of the spectral characteristics of the Ga(In)As subcell of the GaInP/Ga(In)As/Ge triple-junction solar cells has been carried out. It is shown that the use of a wide-gap “window” layer with an optimized thickness (Ga0.51In0.49P - 100 nm, Al0.4Ga0.6As - 110 nm, Al0.8Ga0.2As - 115 nm) for the Ga(In)As subcell allows increasing its photocurrent by about 0.5 mA/cm2, replacing the material of the back potential barrier of the GaInP subcell from Al0.53In0.47P to p+-Ga0.51In0.49P or AlGaAs allows increasing the short circuit current of Ga(In)As subcell by about 0.8 mA/cm2, and the use of the wide-bandgap Ga0.51In0.49P n++-layer in the tunnel diode instead of n++-GaAs increases the photocurrent by about 1 mA/cm2.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Taweewat Krajangsang ◽  
Sorapong Inthisang ◽  
Aswin Hongsingthong ◽  
Amornrat Limmanee ◽  
Jaran Sritharathikhun ◽  
...  

Optimization of p-type hydrogenated microcrystalline silicon oxide thin films (p-μc-Si1-xOx:H) by very high frequency plasma enhanced chemical vapor deposition 40 MHz method for use as a p-layer of a-Si:H solar cells was performed. The properties of p-μc-Si1-xOx:H films were characterized by conductivity, Raman scattering spectroscopy, and spectroscopic ellipsometry. The wide optical band gap p-μc-Si1-xOx:H films were optimized by CO2/SiH4ratio and H2/SiH4dilution. Besides, the effects of wide-gap p-μc-Si1-xOx:H layer on the performance of a-Si:H solar cells with various optical band gaps of p-layer were also investigated. Furthermore, improvements of open circuit voltage, short circuit current, and performance of the solar cells by using the effective wide-gap p-μc-Si1-xOx:H were observed in this study. These results indicate that wide-gap p-μc-Si1-xOx:H is promising to use as window layer in a-Si:H solar cells.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


2018 ◽  
Vol 417 ◽  
pp. 37-41
Author(s):  
Peng-Cheng Dou ◽  
Guo-Bin Feng ◽  
Jian-Min Zhang ◽  
Ming-Ying Song ◽  
Zhen Zhang ◽  
...  

2005 ◽  
Vol 865 ◽  
Author(s):  
K. Matsubara ◽  
A. Yamada ◽  
S. Ishizuka ◽  
K. Sakurai ◽  
H. Tampo ◽  
...  

AbstractZn1-yMgyO bandgap controllable transparent conducting films were used for the wide-gap Cu(In1-xGax)Se2 thin film solar cells. Undoped Zn1-yMgyO and Al doped Zn1-yMgyO films were deposited by co-sputtering using a carousel type sputtering apparatus. Zn1-yMgyO films with Mg content y of up to 0.10 were examined. For Cu(In1-xGax)Se2 with band gap energy ˜1.38 eV, the cell performance was slightly improved by using Zn1-yMgyO and Al doped Zn1-yMgyO instead of ZnO and Al doped ZnO. An unexpected improvement of short circuit current density was observed.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Feng-Hao Hsu ◽  
Na-Fu Wang ◽  
Yu-Zen Tsai ◽  
Ming-Hao Chien ◽  
Mau-Phon Houng

This study confirms that the surface texturation of window layer (Al-Y codoped ZnO) etched by diluted HCl effectively increases conversion efficiency of p-Ni1−xO:Li/n-Si heterojunction solar cells. The results show that the short circuit current density (Jsc) of cell etched at 10 s increases about 8.5% compared to unetched cell, which also corresponds to the increase of efficient photoelectric conversion in NIR region as shown in external quantum efficiency spectra. It is attributed to the increase of light transmittance of AZOY thin films in the NIR region and the effective light path of the NIR wavelength, which results in increasing of light absorption in the base layer.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Hwen-Fen Hong ◽  
Tsung-Shiew Huang ◽  
Wu-Yih Uen ◽  
Yen-Yeh Chen

We performed accelerated tests on sealed and nonsealed InGaP/InGaAs/Ge triple-junction (TJ) solar cells in a complex high temperature and high humidity environment and investigated the electrical properties over time. The degradation of energy conversion efficiency in nonsealed cells was found to be more serious than that in sealed cells. The short-circuit current (ISC), open-circuit voltage (VOC), and fill factor (FF) of sealed cells changed very slightly, though the conversion efficiency decreased 3.6% over 500 h of exposure. This decrease of conversion efficiency was suggested to be due to the deterioration of silicone encapsulant. TheISC,VOC, and FF of nonsealed cells decreased with increasing exposure time. By EL and SEM analysis, the root causes of degradation can be attributed to the damage and cracks near the edge of cells induced by the moisture ingress. It resulted in shunt paths that lead to a deterioration of the conversion efficiency of solar cell by increasing the leakage current, as well as decreasing open-circuit voltage and fill factor of nonsealed solar cells.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 291
Author(s):  
Xu He ◽  
Lili Wu ◽  
Xia Hao ◽  
Jingquan Zhang ◽  
Chunxiu Li ◽  
...  

Wider band-gap window layers can enhance the transmission of sunlight in the short-wavelength region and improve the performance of CdTe solar cells. In this work, we investigated the band structure of In-doped Zn1−xMgxO (ZMO:In) by using first-principles calculations with the GGA + U method and simulated the performance of ZMO:In/CdTe devices using the SCAPS program. The calculation results show that with the increased Mg doping concentration, the band gap of ZMO increases. However, the band gap of ZMO was decreased after In incorporation due to the downwards shifted conduction band. Owing to the improved short circuit current and fill factor, the conversion efficiency of the ZMO:In-based solar cells show better performance as compared with the CdS-based ones. A highest efficiency of 19.63% could be achieved owing to the wider band gap of ZMO:In and the appropriate conduction band offset (CBO) of ~0.23 eV at ZMO:In/CdTe interface when the Mg concentration x approaches 0.0625. Further investigations on thickness suggest an appropriate thickness of ZMO:In (x = 0.0625) in order to obtain better device performance would be 70–100 nm. This work provides a theoretical guidance for designing and fabricating highly efficient CdTe solar cells.


Author(s):  
Omar Ghanim Ghazal ◽  
Ahmed Waleed Kasim ◽  
Nabeel Zuhair Tawfeeq

Cadmium telluride (CdTe)/cadmium sulfide (CdS) solar cell is a promising candidate for photovoltaic (PV) energy production, as fabrication costs are compared by silicon wafers. We include an analysis of CdTe/CdS solar cells while optimizing structural parameters. Solar cell capacitance simulator (SCAPS)-1D 3.3 software is used to analyze and develop energy-efficient. The impact of operating thermal efficiency on solar cells is highlighted in this article to explore the temperature dependence. PV parameters were calculated in the different absorber, buffer, and window layer thicknesses (CdTe, CdS, and SnO2). The effect of the thicknesses of the layers, and the fundamental characteristics of open-circuit voltage, fill factor, short circuit current, and solar energy conversion efficiency were studied. The results showed the thickness of the absorber and buffer layers could be optimized. The temperature had a major impact on the CdTe/CdS solar cells as well. The optimized solar cell has an efficiency performance of >14% when exposed to the AM1.5 G spectrum. CdTe 3000 nm, CdS 50 nm, SnO2 500 nm, and (at) T 300k were the I-V characteristics gave the best conversion open circuit voltage (Voc)=0.8317 volts, short circuit current density (Jsc)=23.15 mA/cm2, fill factor (FF)%=77.48, and efficiency (η)%=14.73. The results can be used to provide important guidance for future work on multi-junction solar cell design.


2007 ◽  
Vol 989 ◽  
Author(s):  
Ruud E.I. Schropp ◽  
Hongbo Li ◽  
Ronald H.J. Franken ◽  
Jatindra K. Rath ◽  
Karine van der Werf ◽  
...  

AbstractWe have implemented a number of methods to improve the performance of proto-Si/proto-SiGe/μc-Si:H triple junction n-i-p solar cells in which the top and bottom cell i-layers are deposited by Hot-Wire CVD. Firstly, a significant current enhancement is obtained by using textured Ag/ZnO back contacts developed in house instead of plain stainless steel. We studied the correlation between the integrated current density in the long wavelength range (650-1000 nm) with the back reflector surface roughness and clarified that the rms roughness from 2D AFM images correlates well with the long wavelength response of the cell when weighted with a Power Spectral Density function. For single junction 2-μm thick μc-Si:H n-i-p cells we improved the short circuit current density from the value of 15.2 mA/cm2 for plain stainless steel to 23.4 mA/cm2 for stainless steel coated with a textured Ag/ZnO back reflector.Secondly, we optimized the μc-Si:H n-type doped layer on this rough back reflector, the n/i interface, and in addition used a profiling scheme for the H2/SiH4 ratio during i-layer deposition. The H2 dilution during growth was stepwise increased in order to prevent a transition to amorphous growth. The efficiency that was reached for a single junction μc-Si:H n-i-p cell was 8.5%, which is the highest reported value for hot-wire deposited cells of this kind, whereas the deposition rate of 2.1 Å/s is about twice as high as in record cells of this type so far. Moreover, these cells show to be totally stable under light-soaking tests.Combining the above techniques, a rather thin triple junction cell (total silicon thickness 2.5 μm) has been obtained with an efficiency of 10.9%. Preliminary light-soaking tests show that this type of triple cells degrades by less than 4%.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Mahfoud Abderrezek ◽  
Mohamed Fathi ◽  
Farid Djahli ◽  
Mohammed Ayad

Luminescence down shifting (LDS) is an elegant approach used to improve the efficiency of single solar cells, in this approach, the photovoltaic (PV) glass material is replaced with a thin layer of polymer polymethyl methacrylate (PMMA) doped with optically active organic dyes. In this paper, we present a theoretical study. To assess the improvements introduced by LDS on an n-i-p-GaAs solar cells structure formed by diverse types of windows layers (Al0.8Ga0.2As, Al0.52In0.48P, and Ga0.5In0.5P). The performance of the solar cell is investigated as a function of organic dyes. It has been shown that the gain in power conversion efficiency attains values up to 5.79, 8.15, and 8.37% with Al0.8Ga0.2As, Al0.52In0.48P, and Ga0.5In0.5P in the standard spectrum AM1.5G, moreover, they increase the short circuit current density.


Sign in / Sign up

Export Citation Format

Share Document