scholarly journals Effect of Quercetin on Haematobiochemical and Histological Changes in the Liver of Polychlorined Biphenyls-Induced Adult Male Wistar Rats

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Kandaswamy Selvakumar ◽  
Senthamilselvan Bavithra ◽  
Sekaran Suganya ◽  
Firdous Ahmad Bhat ◽  
Gunasekaran Krishnamoorthy ◽  
...  

Polychlorinated biphenyls exposure damages the rat liver cells. Hematological parameters such as hemoglobin, packed cell volume, red-blood cells, white-blood cells, neutrophils, platelet counts, and RBC indices were significantly decreased. Polymorphs, eosinophil counts, and erythrocyte sedimentation rate were significantly increased. Serum liver enzymes such as aspartate transaminase, alanine transaminase, alkaline phosphatase, and gamma-glutamyl transferase were increased by PCBs treatment. Serum lipid profiles such as cholesterol, triglycerides, low-density lipoproteins and very-low-density lipoproteins were increased in PCBs-treated rats. High-density lipoprotein, total protein, albumin, globulin levels, and albumin/globulin ratio were also decreased after PCB exposure. Then levels of sodium, potassium, chloride, and bicarbonate were also altered. Serum glucose levels were increased along with total bilirubin after PCBs exposure. Simultaneous quercetin supplementation significantly protected the PCBs-induced changes of hematobiochemical parameters. Thus, quercetin shows a protective role against PCBs-induced alterations in the hematological and biochemical parameters.

1991 ◽  
Vol 69 (8) ◽  
pp. 537-543 ◽  
Author(s):  
Robert Dupras ◽  
Louise Brissette ◽  
Paul D. Roach ◽  
Sylvain Begin ◽  
André Tremblay ◽  
...  

The aim of this work was to compare the disappearance rate of human and rat intermediate density lipoproteins (IDL) using the rat liver perfusion system. Human and rat IDL were produced in vitro by incubating human or rat very low density lipoproteins (VLDL) with either rat post-heparin plasma (method I) or a resolubilized isopropanol precipitate of rat post-heparin plasma (method II). With both methods, the degree of triacylglycerol lipolysis was approximately 55%. The different preparations of IDL were labelled with 125I and added to perfusates of rat livers. The disappearance rates of 125I-labelled IDL were monitored by measuring the radioactivity associated with apolipoprotein (apo) B in the perfusate during a 15-min period. Both human and rat IDL prepared with method I had an increased apoE to apoC ratio as compared with their native counterparts. Furthermore, human IDL had a significantly higher apoE to apoC ratio than rat IDL. However, when IDL were produced in the absence of exchangeable apolipoproteins (method II), no change in the apoE to apoC ratios was observed for the transformation of VLDL to IDL and the ratios were similar for human and rat IDL. Despite these differences, human IDL were always removed at a lower rate than rat IDL. The only striking difference between the two types of IDL made by method II was that the apoB100 to apoB48 ratio was considerably higher in human than in rat IDL. These results suggest that the apoB100 to apoB48 ratio is likely to be responsible for the observed differences in liver uptake between rat and human IDL.Key words: very low density lipoproteins, intermediate density lipoproteins, low density lipoproteins, hepatic lipoprotein receptors, intermediate density lipoprotein uptake, in vitro lipolysis, very low density lipoprotein remnants, apolipoproteins.


1989 ◽  
Vol 35 (4) ◽  
pp. 674-678
Author(s):  
J Peynet ◽  
A Legrand ◽  
B Messing ◽  
F Thuillier ◽  
F Rousselet

Abstract An alpha slow-moving high-density-lipoprotein (HDL) subfraction was seen in a patient presenting with radiation enteritis and peritoneal carcinosis, who was given long-term cyclic parenteral nutrition. This subfraction, observed in addition to normal HDL, was precipitated with low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) by sodium phosphotungstate-magnesium chloride. The patient's serum lipoproteins were analyzed after fractionation by density gradient ultracentrifugation. The alpha slow-moving HDL floated in the ultracentrifugation subfractions with densities ranging from 1.028 to 1.084 kg/L, and their main apolipoproteins included apolipoprotein E in addition to apolipoprotein A-I. These HDL were larger than HDL2. The pathogenesis of this unusual HDL subfraction is hypothesized.


1989 ◽  
Vol 260 (1) ◽  
pp. 207-214 ◽  
Author(s):  
B S Robinson ◽  
Z Yao ◽  
D J Baisted ◽  
D E Vance

The metabolism of lysophosphatidylcholine was studied in cultured rat hepatocytes deficient in choline and methionine. Even though the cells were defective in phosphatidylcholine biosynthesis, the albumin-stimulated release of lysophosphatidylcholine (1.9 nmol/h per mg of cellular protein) was similar to that in hepatocytes supplemented with choline. Albumin also stimulated (1.4-fold) the release of phosphatidylcholine from the deficient cells. The extra phosphatidylcholine and lysophosphatidylcholine in the medium were largely recovered in the albumin fraction (density greater than 1.18 g/ml), suggesting that albumin released these lipids from hepatocytes because of binding to this protein. The secretion of glycerophosphocholine was decreased by about 40% by the addition of albumin. When choline-deficient hepatocytes were supplemented with lysophosphatidylcholine, it was transported into the cells and mainly acylated to form phosphatidylcholine, which increased in mass by 30-35% in the first 4 h of incubation. Lysophosphatidylcholine was shown to be as effective as choline in restoring the secretion of very-low-density lipoproteins to normal amounts, as judged by the secretion of triacylglycerol, phosphatidylcholine and the apolipoproteins associated with very-low-density lipoproteins. Thus phosphatidylcholine synthesis via reacylation of lysophosphatidylcholine, via the CDP-choline pathway or via methylation of phosphatidylethanolamine, will satisfy the requirements for secretion of very-low-density lipoprotein from hepatocytes.


1978 ◽  
Vol 176 (1) ◽  
pp. 169-174 ◽  
Author(s):  
P Thomopoulos ◽  
M Berthelier ◽  
D Lagrange ◽  
M J Chapman ◽  
M H Laudat

The effect of human plasma lipoproteins on lipogenesis from glucose has been studied in isolated rat adipocytes. The very-low-density lipoproteins increased lipogenesis specifically, whereas low-density lipoproteins and high-density lipoproteins were without effect. Such stimulation could be reproduced with partially delipidated very-low-density lipoproteins. Nod-esterified fatty acids and glycerol were also without effect. Pretreatment of the adipocytes with trypsin did not alter the effect of very-low-density lipoprotein. The presence of Ca2+ was required for the full activation of lipogenesis. The synthesis of acylglycerol fatty acids and of acylglycerol glycerol were equally increased. The effect of very-low-density lipoprotein was not additive to that of insulin. It is suggested that very-low-density lipoprotein may directly stimulate lipogenesis in fat-cells, particularly in states when the lipoproteins are present at high concentration in the circulation.


1984 ◽  
Vol 218 (1) ◽  
pp. 101-111 ◽  
Author(s):  
A K Soutar ◽  
B L Knight

Human blood monocyte-derived macrophages that had been cultured in medium containing human serum for 7 days degraded the abnormal very-low-density lipoproteins (VLDL) from the plasma of subjects with type III hyperlipoproteinaemia by two distinct saturable processes. One process was stimulated when cells from normal subjects were preincubated with lipoprotein-free medium, was inhibited by excess unlabelled low-density lipoproteins (LDL) and was absent from cells from subjects with homozygous familial hypercholesterolaemia; on these criteria it was identified as an LDL-receptor-dependent process. Degradation by the second process was of equal magnitude in both cell types and was unaffected by excess unlabelled LDL or acetylated LDL. The activity of this process was reduced when the cells were preincubated in lipoprotein-free medium. The abnormal VLDL from the plasma of cholesterol-fed rabbits were also degraded by this process, which was similar to that in mouse peritoneal macrophages mediated by the receptor for VLDL of beta-electrophoretic mobility [Goldstein, Ho, Brown, Innerarity & Mahley (1980) J. Biol. Chem. 255, 1839-1848].


2021 ◽  
Author(s):  
Fei Peng ◽  
Shangjie Wu ◽  
Si Lei ◽  
Quan Zhang ◽  
Yanjun Zhong

Abstract (1) Background: Triglyceride to high density lipoprotein cholesterol (TG/HDL-c) ratio is crucial when researching metabolic and vascular diseases, and its involvement in COVID-19 was sparsely elaborated on. The purpose of the study was to explore if there were any associations between the TG/HDL-c ratio and COVID-19 prognosis; (2) Methods: A total of 262 COVID-19 patients were retrospectively investigated. The clinical features and baseline hematological parameters were recorded and analyzed; (3) Results: Compared with the survivors, the non-survivors of COVID-19 had significantly higher levels of white blood cells (4.7 vs. 13.0 ×109/L; P < 0.001), neutrophils (3.0 vs. 11.6×109/L; P < 0.001), C-reactive proteins (15.7 vs. 76.7 mg/L; P < 0.001) and TG/HDL-c ratio (1.4 vs. 2.5; P = 0.001). The receiver operating characteristics curve [area under the curve, 0.731; 95% confidence interval, 0.609–0.853; P = 0.001] suggested that the TG/HDL-c ratio could predict the mortality of COVID-19. Moreover, the TG/HDL-c ratio was positively correlated with white blood cells (r = 0.255, P < 0.001), neutrophils (r = 0.243, P < 0.001) and C-reactive proteins (r = 0.170, P < 0.006); (4) Conclusions: Our study demonstrated that TG/HDL-c ratio may potentially be a predictive marker for mortality in COVID-19 patients.


1990 ◽  
Vol 36 (12) ◽  
pp. 2109-2113 ◽  
Author(s):  
R Siekmeier ◽  
W März ◽  
W Gross

Abstract Recently, polyanion precipitation assays for low-density lipoprotein (LDL)-cholesterol have been found to underestimate their analyte in normolipidemic samples (Siekmeier et al., Clin Chim Acta 1988;177:221-30). Therefore, accuracy, specificity, and interference by nonesterified fatty acids have been studied for three precipitants (obtained by heparin, dextran sulfate, or polyvinyl sulfate precipitation). At normal concentrations of LDL, precipitation is incomplete, whereas it is nearly quantitative at high concentrations of LDL. The polyvinyl sulfate reagent markedly responds to variations in the amount of non-LDL protein present in the precipitation mixture. In the dextran sulfate and the polyvinyl sulfate method, but not in the heparin method, the percentages of LDL precipitated notably increase as the concentration of the polyanion compound is decreased. In either assay, very-low-density lipoproteins, but not high-density lipoproteins, are significantly coprecipitated (dextran sulfate 28%, polyvinyl sulfate and heparin 66%) in a concentration-independent fashion. Increased concentrations of nonesterified fatty acids markedly interfere with the dextran sulfate and polyvinyl sulfate assay, but do not much affect results with the heparin reagent.


Sign in / Sign up

Export Citation Format

Share Document