scholarly journals Generalized Nuclear Woods-Saxon Potential under Relativistic Spin Symmetry Limit

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
M. Hamzavi ◽  
A. A. Rajabi

By using the Pekeris approximation, we present solutions of the Dirac equation with the generalized Woods-Saxon potential with arbitrary spin-orbit coupling number under spin symmetry limit. We obtain energy eigenvalues and corresponding eigenfunctions in closed forms. Some numerical results are given too.

2013 ◽  
Vol 91 (7) ◽  
pp. 560-575 ◽  
Author(s):  
Akpan N. Ikot ◽  
E. Maghsoodi ◽  
Akaninyene D. Antia ◽  
S. Zarrinkamar ◽  
H. Hassanabadi

In this paper, we present the Dirac equation for the Mobius square – Yukawa potentials including the tensor interaction term within the framework of pseudospin and spin symmetry limit with arbitrary spin–orbit quantum number, κ. We obtain the energy eigenvalues and the corresponding wave functions using the supersymmetry method. The limiting cases of the problem, which reduce to the Deng-Fan, Yukawa, and Coulomb potentials, are discussed.


2012 ◽  
Vol 21 (12) ◽  
pp. 1250097 ◽  
Author(s):  
M. HAMZAVI ◽  
S. M. IKHDAIR ◽  
K.-E. THYLWE

Approximate analytical solutions of the Dirac equation with the trigonometric Pöschl–Teller (tPT) potential are obtained for arbitrary spin-orbit quantum number κ using an approximation scheme to deal with the spin-orbit coupling terms κ(κ±1)r-2. In the presence of exact spin and pseudo-spin (p-spin) symmetric limitation, the bound state energy eigenvalues and the corresponding two-component wave functions of the Dirac particle moving in the field of attractive and repulsive tPT potential are obtained using the parametric generalization of the Nikiforov–Uvarov (NU) method. The case of nonrelativistic limit is studied too.


2011 ◽  
Vol 26 (07n08) ◽  
pp. 1363-1374 ◽  
Author(s):  
M. HAMZAVI ◽  
A. A. RAJABI ◽  
H. HASSANABADI

In this paper, we present exact solutions of the Dirac equation with the pseudoharmonic potential including linear as well as Coulomb-like tensor potential with arbitrary spin–orbit coupling number κ under spin and pseudospin symmetry limits. The Nikiforov–Uvarov method is used to obtain energy eigenvalues and corresponding eigenfunctions in closed forms. We show that tensor interaction removes degeneracies between spin and pseudospin doublets. Some numerical results are also given.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Hadi Tokmehdashi ◽  
Ali Akbar Rajabi ◽  
Majid Hamzavi

The bound-state solutions of the Dirac equation for the Manning-Rosen potential are presented approximately for arbitrary spin-orbit quantum numberκwith the Hulthén and Coulomb-like potentials as a tensor interaction. The generalized parametric Nikiforov-Uvarov (NU) method is used to obtain energy eigenvalues and corresponding two-component spinors of the two Dirac particles and these are obtained in the closed form by using the framework of the spin symmetry and p-spin symmetry concept. We have also shown that tensor interaction removes degeneracies between spin and p-spin doublets. Some numerical results are also given.


2010 ◽  
Vol 25 (28) ◽  
pp. 2447-2456 ◽  
Author(s):  
M. HAMZAVI ◽  
H. HASSANABADI ◽  
A. A. RAJABI

Dirac equation is solved for Mie-type potential. The energy spectra and the corresponding wave functions are investigated with pseudospin and spin symmetry. The Nikiforov–Uvarov method is used to obtain an analytical solution of the Dirac equation and closed forms of energy eigenvalues are obtained for any spin-orbit coupling term κ. We also present some numerical results of Dirac particles for the well-known Kratzer–Fues and modified Kratzer potentials which are Mie-type potential.


2012 ◽  
Vol 90 (7) ◽  
pp. 655-660 ◽  
Author(s):  
M. Hamzavi ◽  
S.M. Ikhdair

The exact Dirac equation for the energy-dependent Coulomb (EDC) potential including a Coulomb-like tensor (CLT) potential has been studied in the presence of spin and pseudospin symmetries with arbitrary spin–orbit quantum number, κ. The energy eigenvalues and corresponding eigenfunctions are obtained in the framework of the asymptotic iteration method. Some numerical results are obtained in the presence and absence of EDC and CLT potentials.


2016 ◽  
Vol 25 (01) ◽  
pp. 1650002 ◽  
Author(s):  
V. H. Badalov

In this work, the analytical solutions of the [Formula: see text]-dimensional radial Schrödinger equation are studied in great detail for the Wood–Saxon potential by taking advantage of the Pekeris approximation. Within a novel improved scheme to surmount centrifugal term, the energy eigenvalues and corresponding radial wave functions are found for any angular momentum case within the context of the Nikiforov–Uvarov (NU) and Supersymmetric quantum mechanics (SUSYQM) methods. In this way, based on these methods, the same expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformed each other is demonstrated. In addition, a finite number energy spectrum depending on the depth of the potential [Formula: see text], the radial [Formula: see text] and orbital [Formula: see text] quantum numbers and parameters [Formula: see text] are defined as well.


2013 ◽  
Vol 68 (10-11) ◽  
pp. 709-714 ◽  
Author(s):  
Mohammadreza Pahlavani ◽  
Behnam Firoozi

Energy spectrum and wave functions are obtained numerically with a potential consisting of Woods-Saxon, Coulomb, and spin-orbit coupling parts for the nuclei 15O, 15N, 17O, and 17F. The radial parts of the wave functions are used to calculate some matrix elements of electromagnetic transitions. These results are applied to calculate half-lives of low-lying exited states in the one-particle 17O and 17F as well as in the one-hole 15O and 15N isotopes. The calculated half-lives are compared with available experimental and theoretical results based on harmonic oscillator wave functions and Weisskopf units. In comparison with the results calculated from the other methods, our results based on the Woods-Saxon potential indicate a satisfactory agreement with accessible experimental data.


2009 ◽  
Vol 18 (03) ◽  
pp. 631-641 ◽  
Author(s):  
V. H. BADALOV ◽  
H. I. AHMADOV ◽  
A. I. AHMADOV

In this work, the analytical solution of the radial Schrödinger equation for the Woods–Saxon potential is presented. In our calculations, we have applied the Nikiforov–Uvarov method by using the Pekeris approximation to the centrifugal potential for arbitrary l states. The bound state energy eigenvalues and corresponding eigenfunctions are obtained for various values of n and l quantum numbers.


Sign in / Sign up

Export Citation Format

Share Document