coupling number
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
pp. 875608792110250
Author(s):  
Zaheer Abbas ◽  
Sabeeh Khaliq

This theoretical analysis reports on the non-isothermal calendering process of micropolar-Casson fluid and studies the viscoplastic and microrotation effects by utilizing the lubrication approximation (LAT). Exact dimensionless velocity and pressure gradient solutions are achieved. Then a numerical integration technique determined other mechanical quantities. Implementing the finite difference approximations resolved the energy expression. Graphs show how material parameters influence the pressure, pressure gradient, leave-off distance, temperature distribution, force, and power function. Temperature distribution increases with increased coupling number N and decreased Casson parameter [Formula: see text]. Force and power function increase with increased coupling number and decreased Casson parameter. Both Casson and coupling number control the pressure distribution and exiting sheet thickness.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zaheer Abbas ◽  
Sabeeh Khaliq

Abstract The theoretical model of micropolar-Casson fluid is studied in roll-coating over a moving substrate based on the lubrication theory. Closed-form solutions for the velocity, pressure gradient, and microrotation are attained, while a numerical technique employed to compute interesting engineering variables such as pressure, roll-separating force, separating point, and power input. The influence of involved parameters on the physical and engineering quantities are displayed via graphs and table. The coupling number (N) and viscoplastic parameter (β) provide the controlling mechanism for the exit sheet thickness, separating force, and power input. Also, the pressure gradient and pressure profile in the nip region enhances for large values of coupling number (N) whereas the viscoplastic parameter (β) gives the opposite behavior.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kai Tao

<p style='text-indent:20px;'>In this paper, we first prove the strong Birkhoff Ergodic Theorem for subharmonic functions with the irrational shift on the Torus. Then, we apply it to the analytic quasi-periodic Jacobi cocycles and show that for suitable frequency and coupling number, if the Lyapunov exponent of these cocycles is positive at one point, then it is positive on an interval centered at this point and Hölder continuous in <inline-formula><tex-math id="M1">\begin{document}$ E $\end{document}</tex-math></inline-formula> on this interval. What's more, if the coupling number of the potential is large, then the Lyapunov exponent is always positive for all irrational frequencies and Hölder continuous in <inline-formula><tex-math id="M2">\begin{document}$ E $\end{document}</tex-math></inline-formula> for all finite Liouville frequencies. For the Schrödinger cocycles, a special case of the Jacobi ones, its Lyapunov exponent is also Hölder continuous in the frequency and the lengths of the intervals where the Hölder condition of the Lyapunov exponent holds only depend on the coupling number.</p>


2020 ◽  
Author(s):  
Jianwei Li ◽  
Xiaoyu Ma ◽  
Xichuan Li ◽  
Junhua Gu

Abstract Background: The interactions between proteins and aptamers are prevalent in organisms and play an important role in various life activities. Thanks to the rapid accumulation of protein-aptamer interaction data, it is necessary and feasible to construct an accurate and effective computational model to predict aptamers binding to certain interested proteins and protein-aptamer interactions, which is beneficial for understanding mechanisms of protein-aptamer interactions and improving aptamer-based therapies. Results: In this study, a novel web server named PPAI is developed to predict aptamers and protein-aptamer interactions with key sequence features of proteins/aptamers and a machine learning framework integrated adaboost and random forest. A new method for extracting several key sequence features of both proteins and aptamers is presented, where the features for proteins are extracted from amino acid composition, pseudo-amino acid composition, grouped amino acid composition, C/T/D composition and sequence-order-coupling number, while the features for aptamers are extracted from nucleotide composition, pseudo-nucleotide composition (PseKNC) and Moreau-Broto autocorrelation coefficient. On the basis of these feature sets and balanced the samples with SMOTE algorithm, we validate the performance of PPAI by the independent test set. The results demonstrate that the Area Under Curve (AUC) is 0.907 for prediction of aptamer, while the AUC reaches 0.871 for prediction of protein-aptamer interactions. Conclusion: These results indicate that PPAI can query aptamers, predict aptamers and predict protein-aptamer interactions in batch mode precisely and efficiently, which would be a novel bioinformatics tool for the research of protein-aptamer interactions. PPAI web-server is freely available at http://39.96.85.9/PPAI.


2020 ◽  
Author(s):  
Jianwei Li ◽  
Xiaoyu Ma ◽  
Xichuan Li ◽  
Junhua Gu

Abstract Background: The interactions between proteins and aptamers are prevalent in organisms and play an important role in various life activities. Thanks to the rapid accumulation of protein-aptamer interaction data, it is necessary and feasible to construct an accurate and effective computational model to predict aptamers binding to certain interested proteins and protein-aptamer interactions, which is beneficial for understanding mechanisms of protein-aptamer interactions and improving aptamer-based therapies. Results: In this study, a novel web server named PPAI is developed to predict aptamers and protein-aptamer interactions with key sequence features of proteins/aptamers and a machine learning framework integrated adaboost and random forest. A new method for extracting several key sequence features of both proteins and aptamers is presented, where the features for proteins are extracted from amino acid composition, pseudo-amino acid composition, grouped amino acid composition, C/T/D composition and sequence-order-coupling number, while the features for aptamers are extracted from nucleotide composition, pseudo-nucleotide composition (PseKNC) and Moreau-Broto autocorrelation coefficient. On the basis of these feature sets and balanced the samples with SMOTE algorithm, we validate the performance of PPAI by the independent test set. The results demonstrate that the Area Under Curve (AUC) is 0.907 for prediction of aptamer, while the AUC reaches 0.871 for prediction of protein-aptamer interactions. Conclusion: These results indicate that PPAI can query aptamers, predict aptamers and predict protein-aptamer interactions in batch mode precisely and efficiently, which would be a novel bioinformatics tool for the research of protein-aptamer interactions. PPAI web-server is freely available at http://39.96.85.9/PPAI.


2020 ◽  
Vol 18 (4) ◽  
pp. 671-675
Author(s):  
Yulong Li ◽  
Alexander Volkov ◽  
Lev Rabinskiy ◽  
Aleksandr Shemiakov

This article is relevant, as changes during the external loading may affect the stress state of the materials. The aim of this paper is to consider the numerical modeling of heating for circular cylinders in the frame of the theory of elastic materials with voids. A numerical solution is build using COMSOL Multiphysics software, where the implementation of the considered theory is realized based on the direct equation-definition approach. Constitutive relations were written in General form partial differential equation module. A matrix form of the equations for the two-dimensional case was used. Scale effects arising in considered problems are discussed. The classical solution is the particular case of the considered theory, when the coupling number tends to asero, i.e. when the micro-dilatation effects are small and do not affect the material's stress state. The limiting case in the case of the small value of the coupling number is the classical thermoelasticity solution.


Author(s):  
Sanyam Sharma ◽  
Rajeev Verma

A circular bearing experiences the instability problem due to oil whirl, causing violent vibrations at high speed. Two-lobe pressure dam bearing is a solution to the instability arising in high-speed rotating machineries. The paper presents the various static and dynamic characteristics of two-lobe pressure dam bearings, while operating with micropolar fluid. The modified Reynolds equation used to model the lubrication is solved using the finite element method. Performance characteristics such as load, attitude angle, critical mass, threshold speed and whirl frequency are computed, presented graphically and analysed. A detailed comparison of the performance characteristics is done for various micropolar and dam parameters. It is concluded that bearing performance is significantly influenced by dam parameters (dam angles) and micropolar parameters (coupling number and characteristics length).


2018 ◽  
Vol 28 (03) ◽  
pp. 1850041 ◽  
Author(s):  
Honghui Zhang ◽  
Pengcheng Xiao

The focus of this paper is to investigate the dynamics of seizure activities by using the Epileptor coupled model. Based on the coexistence of seizure-like event (SLE), refractory status epilepticus (RSE), depolarization block (DB), and normal state, we first study the dynamical behaviors of two coupled oscillators in different activity states with Epileptor model by linking them with slow permittivity coupling. Our research has found that when one oscillator in normal states is coupled with any oscillator in SLE, RSE or DB states, these two oscillators can both evolve into SLE states under appropriate coupling strength. And then these two SLE oscillators can perform epileptiform synchronization or epileptiform anti-synchronization. Meanwhile, SLE can be depressed when considering the fast electrical or chemical coupling in Epileptor model. Additionally, a two-dimensional reduced model is also given to show the effect of coupling number on seizures. Those results can help to understand the dynamical mechanism of the initiation, maintenance, propagation and termination of seizures in focal epilepsy.


2018 ◽  
Vol 148 ◽  
pp. 07003
Author(s):  
Bahman Hassanati ◽  
Marcus Wheel

In this paper the influence of microstructure on the free vibration of geometrically similar heterogeneous beams with free-free boundary conditions was numerically investigated by detailed finite element analysis (FEA) to identify and quantify any effect of beam size on transverse modal frequencies when the microstructural scale is comparable to the overall size. ANSYS Mechanical APDL was used to generate specific unit cells at the microstructural scale comprised of two isotropic materials with different material properties. Unit cell variants containing voids and inclusions were considered. At the macroscopic scale, four beam sizes consisting of one, two, three or four layers of defined unit cells were represented by repeatedly regenerating the unit cell as necessary. In all four beam sizes the aspect ratio was kept constant. Changes to the volume fractions of each material were introduced while keeping the homogenized properties of the beam fixed. The influence of the beam surface morphology on the results was also investigated. The ANSYS results were compared with the analytical results from solution to Timoshenko beam and nonlocal Timoshenko beam as well as numerical results for a Micropolar beam. In nonlocal Timoshenko beams the Eringen’s small length scale coefficients were estimated for some of the studied models. Numerical analyses based on Micropolar theory were carried out to study the modal frequencies and a method was suggested to estimate characteristic length in bending and coupling number via transverse vibration which verifies the use of Micropolar elasticity theory in dynamic analysis.


2017 ◽  
Vol 69 (6) ◽  
pp. 817-827 ◽  
Author(s):  
Bikash Routh ◽  
Rathindranath Maiti ◽  
Asok Kumar Ray

Purpose In a harmonic drive during assembly of its components like strain wave generating (SWG) cam, flexspline (FS) and circular spline, a gap is formed between the cam’s outer surface and the FS cup inner surface due to mismatching. This gap, which is known as “Coning”, plays a vital role in the flow of lubricant at that interface. This paper aims to analyse the coning phenomenon and the lubrication mechanism. Design/methodology/approach In the present investigation, the geometry of the coning gap and its variation with the SWG cam rotation are established. Essentially, the deflection of FS cup and deformation of SWG cam (bearing outer race) are derived to find the gap due to coning. Next, the hydrodynamic lubrication equation is solved to get pressure profiles for this gap under suitable boundary conditions assuming non-Newtonian lubrication. Findings Methods of estimating the coning gap and lubrication pressure profiles are established. Effects of non-Newtonian terms (coupling number and non-dimentionalized characteristic length) and SWG length (finite, long and short) on pressure profiles are also shown. All analyses are done in non-dimensionalized form. Originality/value Establishing the geometry of coning and non-Newtonian hydrodynamic lubrication aspects in the coning in the FS cup and SWG cam interface are the originality of the present investigation.


Sign in / Sign up

Export Citation Format

Share Document