scholarly journals Conjugate Heat Transfer of an Internally Air-Cooled Nozzle Guide Vane and Shrouds

2014 ◽  
Vol 6 ◽  
pp. 146523 ◽  
Author(s):  
Leiyong Jiang ◽  
Xijia Wu ◽  
Zhong Zhang

In order to assess the life of gas turbine critical components, it is essential to adequately specify their aerothermodynamic working environments. Steady-state analyses of the flow field and conjugate heat transfer of an internally air-cooled nozzle guide vane (NGV) and shrouds of a gas turbine engine at baseline operating conditions are numerically investigated. A high-fidelity CFD model is generated and the simulations are carried out with properly defined boundary conditions. The features of the complicated flow and temperature fields are revealed. In general, the Mach number is lower and the temperature is higher on the NGV pressure side than those on the suction side. There are two high temperature regions on the pressure side, and the temperature across the middle section is relatively low. These findings are closely related to the locations of the holes and outlets of the cooling flow passage, and consistent with the field observations of damaged NGVs. As a technology demonstration, the results provide required information for the life analysis of the NGV/shrouds assembly and improvement of the cooling flow arrangement.

Author(s):  
Leiyong Jiang

In order to assess the life of gas turbine critical components, it is essential to adequately specify their aero-thermodynamic working environments. Steady-state analyses of the flow field and conjugate heat transfer of an internally air-cooled nozzle guide vane (NGV) and shrouds of a gas turbine engine at the baseline operating conditions are numerically investigated. A high-fidelity CFD model is generated and the simulations are carried out with properly defined boundary conditions. The features of the complicated flow and temperature fields are revealed. In general, the Mach number is lower and the temperature is higher on the NGV pressure side than those on the suction side. There are two high temperature spots on the pressure side, and the temperature across the NGV middle section is relatively low. These findings are closely related to the locations of the holes and outlets of the cooling flow passage, and consistent with the field observation of damaged NGVs. The obtained results provide essential information for the structural, material and life analyses of the NGV/shrouds assembly, and improvement of the cooling flow arrangement.


2020 ◽  
Vol 37 (4) ◽  
pp. 327-342
Author(s):  
Arun Kumar Pujari ◽  
B. V. S. S. S Prasad ◽  
Nekkanti Sitaram

AbstractThe effect of conjugate heat transfer is investigated on a first stage nozzle guide vane (NGV) of a high pressure gas turbine which has both impingement and film cooling holes. The study is carried out computationally by considering a linear cascade domain, having two passages formed between the vanes, with a chord length of 228 mm and spacing of 200 mm. The effect of (i) coolant and mainstream Reynolds numbers, (ii) thermal conductivity (iii) temperature difference between the mainstream and coolant at the internal surface of the nozzle guide vane are investigated under conjugate thermal condition. The results show that, with increasing coolant Reynolds number the lower conducting material shows larger percentage decrease in surface temperature as compared to the higher conducting material. However, the internal surface temperature is nearly independent of mainstream Reynolds number variation but shows significant variation for higher conducting material. Further, the temperature gradient within the solid thickness of NGV is higher for the lower conductivity material.


Author(s):  
B. Lad ◽  
L. He

Aerothermnal design capability for cooled high pressure turbines depends on resolving complex physical processes such as coolant mixing, coupled fluid-solid convection-conduction heat transfer, and their interactions. This paper presents the development of the generalised Immersed Mesh Block 2 (IMB2) method, which allows high resolution predictions of all these processes to be conducted for a fully cooled turbine stage within a couple of days. The method consists of creating high density meshes of cooling holes to capture the high flow gradients in the fluid domain and separately, generating corresponding meshes for the local metal layer with high temperature gradient. These can then be inserted rapidly into a host turbine domain for conjugate heat transfer as immersed mesh blocks for fluids (IMBf) and metals (IMBm). In this way, conjugate heat transfer meshes of entire rows of cooling holes can be generated and inserted into a host mesh within minutes. The composite domain is then solved with simultaneous coupling between all the fluid and metal IMBs, as well as the host mesh. The paper presents the methodology of this approach and demonstrates its application to a transonic, fully cooled nozzle guide vane.


1990 ◽  
Vol 112 (3) ◽  
pp. 512-520 ◽  
Author(s):  
T. Arts ◽  
A. E. Bourguignon

The purpose of this paper is to quantify the influence on external convective heat transfer of a coolant film whose position varies along the pressure side of a high-pressure turbine nozzle guide vane. The measurements were performed in the short-duration Isentropic Light Piston Compression Tube facility of the von Karman Institute. The effects of external and internal flow are considered in terms of Mach number, Reynolds number, free-stream turbulence intensity, blowing rate, and coolant to free-stream temperature ratio. The way to evaluate these results in terms of film cooling efficiency and heat transfer coefficient is finally discussed.


Author(s):  
T. Arts ◽  
A. E. Bourguignon

The purpose of this paper is to quantify the influence on external convective heat transfer of a coolant film whose position varies along the pressure side of a high pressure turbine nozzle guide vane. The measurements were performed in the short duration Isentropic Light Piston Compression Tube facility of the von Karman Institute. The effects of external and internal flow are considered in terms of Mach number, Reynolds number, freestream turbulence intensity, blowing rate and coolant to freestream temperature ratio. The way to evaluate these results in terms of film cooling efficiency and heat transfer coefficient is finally discussed.


Author(s):  
Jong-Shang Liu ◽  
Mark C. Morris ◽  
Malak F. Malak ◽  
Randall M. Mathison ◽  
Michael G. Dunn

In order to have higher power to weight ratio and higher efficiency gas turbine engines, turbine inlet temperatures continue to rise. State-of-the-art turbine inlet temperatures now exceed the turbine rotor material capability. Accordingly, one of the best methods to protect turbine airfoil surfaces is to use film cooling on the airfoil external surfaces. In general, sizable amounts of expensive cooling flow delivered from the core compressor are used to cool the high temperature surfaces. That sizable cooling flow, on the order of 20% of the compressor core flow, adversely impacts the overall engine performance and hence the engine power density. With better understanding of the cooling flow and accurate prediction of the heat transfer distribution on airfoil surfaces, heat transfer designers can have a more efficient design to reduce the cooling flow needed for high temperature components and improve turbine efficiency. This in turn lowers the overall specific fuel consumption (SFC) for the engine. Accurate prediction of rotor metal temperature is also critical for calculations of cyclic thermal stress, oxidation, and component life. The utilization of three-dimensional computational fluid dynamics (3D CFD) codes for turbomachinery aerodynamic design and analysis is now a routine practice in the gas turbine industry. The accurate heat-transfer and metal-temperature prediction capability of any CFD code, however, remains challenging. This difficulty is primarily due to the complex flow environment of the high-pressure turbine, which features high speed rotating flow, coupling of internal and external unsteady flows, and film-cooled, heat transfer enhancement schemes. In this study, conjugate heat transfer (CHT) simulations are performed on a high-pressure cooled turbine stage, and the heat flux results at mid span are compared to experimental data obtained at The Ohio State University Gas Turbine Laboratory (OSUGTL). Due to the large difference in time scales between fluid and solid, the fluid domain is simulated as steady state while the solid domain is simulated as transient in CHT simulation. This paper compares the unsteady and transient results of the heat flux on a high-pressure cooled turbine rotor with measurements obtained at OSUGTL.


2000 ◽  
Vol 123 (2) ◽  
pp. 258-265 ◽  
Author(s):  
D. A. Rowbury ◽  
M. L. G. Oldfield ◽  
G. D. Lock

An empirical means of predicting the discharge coefficients of film cooling holes in an operating engine has been developed. The method quantifies the influence of the major dimensionless parameters, namely hole geometry, pressure ratio across the hole, coolant Reynolds number, and the freestream Mach number. The method utilizes discharge coefficient data measured on both a first-stage high-pressure nozzle guide vane from a modern aero-engine and a scale (1.4 times) replica of the vane. The vane has over 300 film cooling holes, arranged in 14 rows. Data was collected for both vanes in the absence of external flow. These noncrossflow experiments were conducted in a pressurized vessel in order to cover the wide range of pressure ratios and coolant Reynolds numbers found in the engine. Regrettably, the proprietary nature of the data collected on the engine vane prevents its publication, although its input to the derived correlation is discussed. Experiments were also conducted using the replica vanes in an annular blowdown cascade which models the external flow patterns found in the engine. The coolant system used a heavy foreign gas (SF6 /Ar mixture) at ambient temperatures which allowed the coolant-to-mainstream density ratio and blowing parameters to be matched to engine values. These experiments matched the mainstream Reynolds and Mach numbers and the coolant Mach number to engine values, but the coolant Reynolds number was not engine representative (Rowbury, D. A., Oldfield, M. L. G., and Lock, G. D., 1997, “Engine-Representative Discharge Coefficients Measured in an Annular Nozzle Guide Vane Cascade,” ASME Paper No. 97-GT-99, International Gas Turbine and Aero-Engine Congress & Exhibition, Orlando, Florida, June 1997; Rowbury, D. A., Oldfield, M. L. G., Lock, G. D., and Dancer, S. N., 1998, “Scaling of Film Cooling Discharge Coefficient Measurements to Engine Conditions,” ASME Paper No. 98-GT-79, International Gas Turbine and Aero-Engine Congress & Exhibition, Stockholm, Sweden, June 1998). A correlation for discharge coefficients in the absence of external crossflow has been derived from this data and other published data. An additive loss coefficient method is subsequently applied to the cascade data in order to assess the effect of the external crossflow. The correlation is used successfully to reconstruct the experimental data. It is further validated by successfully predicting data published by other researchers. The work presented is of considerable value to gas turbine design engineers as it provides an improved means of predicting the discharge coefficients of engine film cooling holes.


Sign in / Sign up

Export Citation Format

Share Document