scholarly journals Cohesive Zone Model Based Numerical Analysis of Steel-Concrete Composite Structure Push-Out Tests

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
J. P. Lin ◽  
J. F. Wang ◽  
R. Q. Xu

Push-out tests were widely used to determine the shear bearing capacity and shear stiffness of shear connectors in steel-concrete composite structures. The finite element method was one efficient alternative to push-out testing. This paper focused on a simulation analysis of the interface between concrete slabs and steel girder flanges as well as the interface of the shear connectors and the surrounding concrete. A cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then, a zero-thickness cohesive element was implemented via the user-defined element subroutine UEL in the software ABAQUS, and a multiple broken line mode was used to define the constitutive relations of the cohesive zone. A three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. This method was found to accurately calculate the shear capacity and shear stiffness of shear connectors. The numerical results showed that the multiple broken lines mode cohesive zone model could describe the nonlinear mechanical behavior of the interface between steel and concrete and that a discontinuous deformation numerical simulation could be implemented.

2020 ◽  
Vol 23 (16) ◽  
pp. 3401-3414
Author(s):  
Yuqing Hu ◽  
Huiguang Yin ◽  
Xiaomeng Ding ◽  
Shuai Li ◽  
JQ Wang

In this article, the static shear behavior of large-headed studs embedded in ultra-high-performance concrete was investigated by push-out test and numerical analysis. A total of nine push-out specimens with single and grouped studs embedded in ultra-high-performance concrete and normal strength concrete slabs were tested. In the testing process, only shank failure appeared without cracks occurring on the surface of ultra-high-performance concrete slab when the steel–ultra-high-performance concrete specimens reached ultimate shear capacity. The shear capacity of specimens with large studs embedded in ultra-high-performance concrete slab increased by 10.6% compared those in normal concrete, and the current design codes such as Eurocode4, AASHTO LFRD 2014, and GB50017-2003 all underestimate the shear capacity of such kind of steel–ultra-high-performance concrete composite structures according to experimental results. Numerical models were established using ABAQUS with introducing damage plasticity material model. The influence of stud diameter, concrete strength, thickness of clear cover, and spacing of studs on the static shear behavior was thoroughly investigated via parametric analysis. Based on the experimental and numerical analysis, the existence of wedge block and the decrease of axis force are beneficial for improving the shear capacity of stud shear connectors.


2015 ◽  
Vol 744-746 ◽  
pp. 1320-1323
Author(s):  
Hua Zhang ◽  
Hai Wei Zhang ◽  
Feng Su

The cohesive zone model (CZM) is being increasingly used to simulate fracture and fragmentation processes in metallic, polymeric, and ceramic materials and their composites. The CZM regards fracture as a gradual phenomenon in which separation takes place across an extended crack tip. This paper introduces the concept of CZM, the constitutive relations of CZM, the influence of the shape of the interface law and up-to-date applications of CZM to bituminous mixtures and pavement structures. Furthermore, some current challenges and the future directions to the modeling of fracture in bituminous materials and pavements are briefly discussed.


2018 ◽  
Vol 774 ◽  
pp. 84-89 ◽  
Author(s):  
Roman Vodička ◽  
Katarína Krajníková

A model for numerical analysis of interface damage which leads to interface crack initiationand propagation in multi-domain structures under cyclic loading is considered. Modelling of damagetakes into account various relations between interface stresses and displacement gaps providing theresponse of a cohesive zone model, additionally equipped by a kind of viscosity associated to theevolution of the interface damage. Together with repeating loading-unloading conditions, it makesthis damage process to have a fatigue-like character, where the crack appears for smaller magnitudeof the cyclic load than for pure uploading.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
F. Di Caprio ◽  
S. Saputo ◽  
A. Sellitto

Composite laminates are characterized by high mechanical in-plane properties while experiencing, on the contrary, a poor out-of-plane response. The composite laminates, indeed, are often highly vulnerable to interlaminar damages, also called “delaminations.” One of the main techniques used for the numerical prediction of interlaminar damage onset and growth is the cohesive zone model (CZM). However, this approach is characterised by uncertainties in the definition of the parameters needed for the implementation of the cohesive behaviour in the numerical software. To overcome this issue, in the present paper, a numerical-experimental procedure for the calibration of material parameters governing the mechanical behaviour of CZM based on cohesive surface and cohesive element approaches is presented. Indeed, by comparing the results obtained from the double cantilever beam (DCB) and end-notched flexure (ENF) experimental tests with the corresponding numerical results, it has been possible to accurately calibrate the parameters of the numerical models needed to simulate the delamination growth phenomenon at coupon level.


2014 ◽  
Vol 622-623 ◽  
pp. 443-452 ◽  
Author(s):  
R. Kebriaei ◽  
Alexander Mikloweit ◽  
I.N. Vladimirov ◽  
Markus Bambach ◽  
S. Reese ◽  
...  

Flexible and economic production of composite structures which include functional layersrequires new manufacturing techniques. Joining by plastic deformation is a powerful technique whichis widely used in production processes to create metal composites [1]. The use of plastic deformationin joining processes offers improved accuracy, reliability and environmental safety [2]. The presentstudy deals with modeling of the bonding and debonding behavior in metallic composite structures.Therefore, a general cohesive zone element formulation in the framework of zero-thickness interfaceelements is developed. This enables the accurate and efficient modeling of the interface based on aninterfacial traction-separation law. The paper is concluded by a detailed description of the processsimulation and a comparison of its results with experimental data.


2018 ◽  
Vol 877 ◽  
pp. 436-445
Author(s):  
J. Muthupandian ◽  
Koovaparambil Ramunny Pradeep

Composite structures are prone to delamination/de-bond and effective tool to simulate de-lamination is cohesive zone model. Cohesive zone model uses multiple adhesive failure parameters. The influence of adhesive parameters on the delamination and fracture of Double cantilever Beam, subjected to Mode-I loading through finite element simulations is studied usingExponential Cohesive Zone Model (ECZM). Influence of Normal stress (σ), normal deflection (δn) and tangential deflection (δt) on the de-bond propagation is examined.From the analysis it is found that the tangential deflection (δt) has negligible impact on Mode-I loading and fracture of the specimen. Significant effects are seen for the perturbation of Normal stress (σ) and Normal deflection (δn). A Finite element based ECZM for composite layer (HTS/M18) with EPG 2601 adhesive is proposed. The model is validated by comparing with test data.


Sign in / Sign up

Export Citation Format

Share Document