scholarly journals Profit Malmquist Index and Its Global Form in the Presence of the Negative Data in DEA

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ghasem Tohidi ◽  
Shabnam Razavyan ◽  
Simin Tohidnia

This paper first introduces the allocative and profit efficiency in the presence of the negative data and then presents a new circular index to measure the productivity change of decision making units (DMUs) for the case that the dataset contains the inputs and/or outputs with the negative values in data envelopment analysis (DEA). The proposed index is decomposed into four components in the two stages. The range directional model (RDM) and the proposed efficiencies are used to compute the proposed index and its components. The interpretations of the components are presented. Finally, a numerical example is organized to illustrate the proposed index and its components at three successive periods of time.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Xishuang Han ◽  
Xiaolong Xue ◽  
Jiaoju Ge ◽  
Hengqin Wu ◽  
Chang Su

Data envelopment analysis can be applied to measure the productivity of multiple input and output decision-making units. In addition, the data envelopment analysis-based Malmquist productivity index can be used as a tool for measuring the productivity change during different time periods. In this paper, we use an input-oriented model to measure the energy consumption productivity change from 1999 to 2008 of fourteen industry sectors in China as decision-making units. The results show that there are only four sectors that experienced effective energy consumption throughout the whole reference period. It also shows that these sectors always lie on the efficiency frontier of energy consumption as benchmarks. The other ten sectors experienced inefficiency in some two-year time periods and the productivity changes were not steady. The data envelopment analysis-based Malmquist productivity index provides a good way to measure the energy consumption and can give China's policy makers the information to promote their strategy of sustainable development.


2011 ◽  
Vol 50 (4II) ◽  
pp. 685-698
Author(s):  
Samina Khalil

This paper aims at measuring the relative efficiency of the most polluting industry in terms of water pollution in Pakistan. The textile processing is country‘s leading sub sector in textile manufacturing with regard to value added production, export, employment, and foreign exchange earnings. The data envelopment analysis technique is employed to estimate the relative efficiency of decision making units that uses several inputs to produce desirable and undesirable outputs. The efficiency scores of all manufacturing units exhibit the environmental consciousness of few producers is which may be due to state regulations to control pollution but overall the situation is far from satisfactory. Effective measures and instruments are still needed to check the rising pollution levels in water resources discharged by textile processing industry of the country. JEL classification: L67, Q53 Keywords: Data Envelopment Analysis (DEA), Decision Making Unit (DMU), Relative Efficiency, Undesirable Output


2020 ◽  
Vol 33 (02) ◽  
pp. 431-445
Author(s):  
Azarnoosh Kafi ◽  
Behrouz Daneshian ◽  
Mohsen Rostamy-Malkhalifeh ◽  
Mohsen Rostamy-Malkhalifeh

Data Envelopment Analysis (DEA) is a well-known method for calculating the efficiency of Decision-Making Units (DMUs) based on their inputs and outputs. When the data is known and in the form of an interval in a given time period, this method can calculate the efficiency interval. Unfortunately, DEA is not capable of forecasting and estimating the efficiency confidence interval of the units in the future. This article, proposes a efficiency forecasting algorithm along with 95% confidence interval to generate interval data set for the next time period. What’s more, the manager’s opinion inserts and plays its role in the proposed forecasting model. Equipped with forecasted data set and with respect to data set from previous periods, the efficiency for the future period can be forecasted. This is done by proposing a proposed model and solving it by the confidence interval method. The proposed method is then implemented on the data of an automotive industry and, it is compared with the Monte Carlo simulation methods and the interval model. Using the results, it is shown that the proposed method works better to forecast the efficiency confidence interval. Finally, the efficiency and confidence interval of 95% is calculated for the upcoming period using the proposed model.


2020 ◽  
Vol 6 (9) ◽  
pp. 1877
Author(s):  
Oky Suryoaji ◽  
Eko Fajar Cahyono

Tujuan penelitian ini adalah untuk mengetahui tingkat efisiensi dan produktivitas perusahaan asuransi jiwa antara konvensional dan syariah (baik Unit Usaha Syariah maupun Full Fledge) periode 2014 – 2017. Penelitian ini menggunakan pendekatan kuantitatif dengan metode non parametrik DEA (Data Envelopment Analysis) yang dilandaskan dengan asumsi CRS (Constant Return to Scale) dan VRS (Variable Return to Scale) dan Indeks Malmquist asumsi TFPC (Total Factor Productivity Change) dengan diolah menggunakan aplikasi DEAP Versi 2.1. Variabel yang digunakan meliputi Total Aset, Beban, Klaim, Premi/Dana Tabrru’, dan Pendapatan. Subjek yang digunakan dalam penelitian ini sebanyak 29 perusahaan asuransi jiwa syariah yang terdiri 10 perusahaan asuransi jiwa syariah dan 19 perusahaan asuransi jiwa konvensional. Hasil penelitian menunjukkan bahwa rata-rata perusahaan asuransi jiwa konvensional dan syariah belum mencapai efisien (CRS) dan rata-rata TFPC perusahaan asuransi jiwa konvensional sudah mencapai produktivitas sementara syariah belum mencapai produktivitas.Keywords:Asuransi Jiwa Syariah, Efisiensi, Produktivitas, Data Envelopment Analysis (DEA), Constant Return to Scale (CRS), Variable Return to Scale (VRS), Malmquist Index (MI), Total Factor Productivity Change (TFPC)


Author(s):  
N. Aghayi ◽  
Z. Ghelej Beigi ◽  
K. Gholami ◽  
F. Hosseinzadeh Lotfi

The conventional Data Envelopment Analysis (DEA) model considers Decision Making Units (DMUs) as a black box, meaning that these models do not consider the connection and the inner structures of DMUs. Moreover, these models consider that the activities of DMUs in each time are independent of other times, but in the real world, the inner structures of DMUs are complicated, and the activities of DMUs are dependent on other times. Therefore, in this chapter, the authors consider DMUs with network structure and the activity of each DMU in each time dependent to activity of other times, so they call this structure a dynamic network. To this end, in this chapter, models are suggested to evaluate the dynamic network efficiency based on the SBM model, which is a non-radial model of three types with respect to orientation: input-oriented, output-oriented, and non-oriented.


2018 ◽  
Vol 35 (06) ◽  
pp. 1850039 ◽  
Author(s):  
Lei Chen ◽  
Fei-Mei Wu ◽  
Feng Feng ◽  
Fujun Lai ◽  
Ying-Ming Wang

Major drawbacks of the traditional data envelopment analysis (DEA) method include selecting optimal weights in a flexible manner, lacking adequate discrimination power for efficient decision-making units, and considering only desirable outputs. By introducing the concept of global efficiency optimization, this study proposed a double frontiers DEA approach with undesirable outputs to generate a common set of weights for evaluating all decision-making units from both the optimistic and pessimistic perspectives. For a unique optimal solution, compromise models for individual efficiency optimization were developed as a secondary goal. Finally, as an illustration, the models were applied to evaluate the energy efficiency of the Chinese regional economy. The results showed that the proposed approach could improve discrimination power and obtain a fair result in a case where both desirable and undesirable outputs exist.


2020 ◽  
Vol 54 (4) ◽  
pp. 1215-1230
Author(s):  
Mediha Örkcü ◽  
Volkan Soner Özsoy ◽  
H. Hasan Örkcü

The ranking of the decision making units (DMUs) is an essential problem in data envelopment analysis (DEA). Numerous approaches have been proposed for fully ranking of units. Majority of these methods consider DMUs with optimistic approach, whereas their weaknesses are ignored. In this study, for fully ranking of the units, a modified optimistic–pessimistic approach, which is based on game cross efficiency idea is proposed. The proposed game like iterative optimistic-pessimistic DEA procedure calculates the efficiency scores according to weaknesses and strengths of units and is based on non-cooperative game. This study extends the optimistic-pessimistic DEA approach to obtain robust rank values for DMUs. The proposed approach yields Nash equilibrium solution, thus overcomes the problem of non-uniqueness of the DEA optimal weights that can possibly reduce the usefulness of cross efficiency. Finally, in order to verify the validity of the proposed model and to show the practicability of algorithm, we apply a real-world example for selection of industrial R&D projects. The proposed model can increase the discriminating power of DMUs and can fully rank the DMUs.


Sign in / Sign up

Export Citation Format

Share Document