scholarly journals Modeling of Tool Wear in Vibration Assisted Nano Impact-Machining by Loose Abrasives

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Sagil James ◽  
Murali M. Sundaram

Vibration assisted nano impact-machining by loose abrasives (VANILA) is a novel nanomachining process that combines the principles of vibration assisted abrasive machining and tip-based nanomachining, to perform target specific nanoabrasive machining of hard and brittle materials. An atomic force microscope (AFM) is used as a platform in this process wherein nanoabrasives, injected in slurry between the workpiece and the vibrating AFM probe which is the tool, impact the workpiece and cause nanoscale material removal. The VANILA process are conducted such that the tool tip does not directly contact the workpiece. The level of precision and quality of the machined features in a nanomachining process is contingent on the tool wear which is inevitable. Initial experimental studies have demonstrated reduced tool wear in the VANILA process as compared to indentation process in which the tool directly contacts the workpiece surface. In this study, the tool wear rate during the VANILA process is analytically modeled considering impacts of abrasive grains on the tool tip surface. Experiments are conducted using several tools in order to validate the predictions of the theoretical model. It is seen that the model is capable of accurately predicting the tool wear rate within 10% deviation.

2018 ◽  
Vol 5 (2) ◽  
pp. 5774-5782 ◽  
Author(s):  
L. Selvarajan ◽  
M.Manohar ◽  
J. Amos Robert Jayachandran ◽  
P Mouri ◽  
P. Selvakumar

2016 ◽  
Vol 679 ◽  
pp. 117-121
Author(s):  
Hai Long Wang ◽  
Xue Du ◽  
Su Juan Wang

The paper presents a review on the current situation of diamond tool ultrasonic vibration cutting ferrous metal. The key technology of diamond tool ultrasonic vibration cutting ferrous metals is presented in this paper and the influence of the processing environment of the presence of carbon atoms protective gas, the presence of carbon particles coolant of temperature control technology, ultrasonic vibration, workpiece material surface pretreatment or without on diamond tool wear rate and workpiece surface quality, the relationship between diamond tool wear rate, the workpiece surface quality and the ultrasonic vibration technology, processing environment, workpiece material surface pretreatment technology factors is given. Propose research direction and research emphasis on reducing diamond tool wear rate and improve workpiece surface quality.


2017 ◽  
Author(s):  
Nick H. Duong ◽  
J. Ma ◽  
Shuting Lei

In this paper, the commercial FEM software package Abaqus is employed to model the novel nanomachining process, Vibration Assisted Nano Impact machining by Loose Abrasives (VANILA), which combines the principles of vibration-assisted abrasive machining and tip-based nanomachining to conduct nano abrasive machining of hard and brittle materials. In this novel nanomachining process, an atomic force microscope (AFM) is used as a platform and the nano abrasives injected in slurry between the workpiece and the vibrating AFM probe impact the workpiece and result in nanoscale material removal. Diamond particles are used as the loose abrasives. The effects of impact speed, angle of impacts, and the frictional coefficient between the workpiece and abrasives are investigated using Abaqus. It is found that the impact speed, impact angle, and frictional coefficient between the silicon workpiece and nanoabrasives have big influence on the nanocavity’s size and depth.


2016 ◽  
Vol 40 (3) ◽  
pp. 331-349 ◽  
Author(s):  
S. Sivasankar ◽  
R. Jeyapaul

This research work concentrates on Electrical Discharge Machining (EDM) performance evaluation of ZrB2- SiC ceramic matrix composites with different tool materials at various machining parameters. Monolithic ZrB2 possesses lower relative density (98.72%) than composites. ZrB2 with 20 Vol.% of SiC possesses 99.74% of the relative density with improved hardness values. Bend strength and Young’s modulus increase with SiC addition until it reaches 20 Vol% and then decreasing. EDM performance on tool materials of tungsten, niobium, tantalum, graphite and titanium at various levels of pulse on time and pulse off time are analyzed. Graphite produces the best Material removal rate (MRR) for all the workpieces. Tool wear rate decreases with melting point and thermal conductivity of the tool material.


Author(s):  
Santosh Kumar Sahu ◽  
Saurav Datta

Inconel 718 is a nickel-based super alloy widely applied in aerospace, automotive, and defense industries. Low thermal conductivity, extreme high temperature strength, strong work-hardening tendency make the alloy difficult-to-cut. In contrast to traditional machining, nonconventional route like electro-discharge machining is relatively more advantageous to machine this alloy. However, low thermal conductivity of Inconel 718 restricts electro-discharge machining from performing well. In order to improve the electro-discharge machining performance of Inconel 718, powder-mixed electro-discharge machining was reported in this paper. It was carried out by adding graphite powder to the dielectric media in consideration with varied peak discharge current. The morphology and topographical features of the machined surface including surface roughness, crack density, white layer thickness, metallurgical aspects (phase transformation, crystallite size, microstrain, and dislocation density), material migration, residual stress, microindentation hardness, etc. were studied and compared with that of the conventional electro-discharge machining. Additionally, effects of peak discharge current were discussed on influencing different performance measures of powder-mixed electro-discharge machining. Material removal efficiency and tool wear rate were also examined. Use of graphite powder-mixed electro-discharge machining was found to be better in performance for improved material removal rate, superior surface finish, reduced tool wear rate, and reduced intensity as well as severity of surface cracking. Lesser extent of carbon migration onto the machined surface as observed in powder-mixed electro-discharge machining in turn reduced the formation of hard carbide layers. As compared to the conventional electro-discharge machining, graphite powder-mixed electro-discharge machining exhibited relatively less microhardness and residual stress at the machined surface.


Author(s):  
Arun Kumar Rouniyar ◽  
Pragya Shandilya

Magnetic field assisted powder mixed electrical discharge machining is a hybrid machining process with suitable modification in electrical discharge machining combining the use of magnetic field and fine powder in the dielectric fluid. Aluminum 6061 alloy has found highly significance for the advanced industries like automotive, aerospace, electrical, marine, food processing and chemical due to good corrosion resistance, high strength-to-weight ratio, ease of weldability. In this present work, magnetic field assisted powder mixed electrical discharge machining setup was fabricated and experiments were performed using one factor at a time approach for aluminum 6061 alloy. The individual effect of machining parameters namely, peak current, pulse on time, pulse off time, powder concentration and magnetic field on material removal rate and tool wear rate was investigated. The effect of peak current was found to be dominant on material removal rate and tool wear rate followed by pulse on time, powder concentration and magnetic field. Increase in material removal rate and tool wear rate was observed with increase in peak current, pulse on time and a decrease in pulse off time, whereas, for material removal rate increases and tool wear rate decreases up to the certain value and follow the reverse trend with an increase in powder concentration. Material removal rate was increased and tool wear rate was decreased with increase in magnetic field.


Sign in / Sign up

Export Citation Format

Share Document