scholarly journals Quantized passive filtering for switched delayed neural networks

2021 ◽  
Vol 26 (1) ◽  
pp. 93-112
Author(s):  
Youmei Zhou ◽  
Yajuan Liu ◽  
Jianping Zhou ◽  
Zhen Wang

The issue of quantized passive filtering for switched delayed neural networks with noise interference is studied in this paper. Both arbitrary and semi-Markov switching rules are taken into account. By choosing Lyapunov functionals and applying several inequality techniques, sufficient conditions are proposed to ensure the filter error system to be not only exponentially stable, but also exponentially passive from the noise interference to the output error. The gain matrix for the proposed quantized passive filter is able to be determined through the feasible solution of linear matrix inequalities, which are computationally tractable with the help of some popular convex optimization tools. Finally, two numerical examples are given to illustrate the usefulness of the quantized passive filter design methods.

2019 ◽  
Vol 42 (2) ◽  
pp. 330-336
Author(s):  
Dongbing Tong ◽  
Qiaoyu Chen ◽  
Wuneng Zhou ◽  
Yuhua Xu

This paper proposes the [Formula: see text]-matrix method to achieve state estimation in Markov switched neural networks with Lévy noise, and the method is very distinct from the linear matrix inequality technique. Meanwhile, in light of the Lyapunov stability theory, some sufficient conditions of the exponential stability are derived for delayed neural networks, and the adaptive update law is obtained. An example verifies the condition of state estimation and confirms the effectiveness of results.


2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Zhongda Lu ◽  
Guoliang Zhang ◽  
Yi Sun ◽  
Jie Sun ◽  
Fangming Jin ◽  
...  

This paper investigates nonfragile H∞ filter design for a class of continuous-time delayed Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delays. Filter parameters occur multiplicative gain variations according to the filter’s implementation, to handle this variations, a nonfragile H∞ filter is presented and a novel filtering error system is established. The nonfragile H∞ filter guarantees the filtering error system to be asymptotically stable and satisfies given H∞ performance index. By constructing a novel Lyapunov-Krasovskii function and using the linear matrix inequality (LMI), delay-dependent conditions are exploited to derive sufficient conditions for nonfragile designing H∞ filter. Using new matrix decoupling method to reduce the computational complexity, the filter parameters can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, numerical examples are given to show the effectiveness of the proposed method.


2007 ◽  
Vol 17 (03) ◽  
pp. 207-218 ◽  
Author(s):  
BAOYONG ZHANG ◽  
SHENGYUAN XU ◽  
YONGMIN LI

This paper considers the problem of robust exponential stability for a class of recurrent neural networks with time-varying delays and parameter uncertainties. The time delays are not necessarily differentiable and the uncertainties are assumed to be time-varying but norm-bounded. Sufficient conditions, which guarantee that the concerned uncertain delayed neural network is robustly, globally, exponentially stable for all admissible parameter uncertainties, are obtained under a weak assumption on the neuron activation functions. These conditions are dependent on the size of the time delay and expressed in terms of linear matrix inequalities. Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed stability results.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
M. Rajchakit ◽  
P. Niamsup ◽  
T. Rojsiraphisal ◽  
G. Rajchakit

This paper studies the problem of guaranteed cost control for a class of uncertain delayed neural networks. The time delay is a continuous function belonging to a given interval but not necessary to be differentiable. A cost function is considered as a nonlinear performance measure for the closed-loop system. The stabilizing controllers to be designed must satisfy some exponential stability constraints on the closed-loop poles. By constructing a set of augmented Lyapunov-Krasovskii functionals combined with Newton-Leibniz formula, a guaranteed cost controller is designed via memoryless state feedback control, and new sufficient conditions for the existence of the guaranteed cost state feedback for the system are given in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the obtained result.


2014 ◽  
Vol 511-512 ◽  
pp. 875-879 ◽  
Author(s):  
Ya Jun Li ◽  
Yan Nong Liang

The H{infinity} filter design problem of recurrent neural networks with time delay is considered. Based on delay decomposition approach, the delay-dependent condition is derived to ensure that the filtering error system is globally asymptotically stable with a guaranteed performance. And the design of such a filter can be solved by the linear matrix inequality. A numerical example is provided to demonstrate that the developed approach is efficient.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Fang ◽  
Kang Yan ◽  
Kelin Li

This paper is concerned with the impulsive synchronization problem of chaotic delayed neural networks. By employing Lyapunov stability theorem, impulsive control theory and linear matrix inequality (LMI) technique, several new sufficient conditions ensuring the asymptotically synchronization for coupled chaotic delayed neural networks are derived. Based on these new sufficient conditions, an impulsive controller is designed. Moreover, the stable impulsive interval of synchronized neural networks is objectively estimated by combining the MATLAB LMI toolbox and one of the two given equations. Two examples with numerical simulations are given to illustrate the effectiveness of the proposed method.


2021 ◽  
Vol 20 ◽  
pp. 281-288
Author(s):  
Mengying Ding ◽  
Yali Dong

In this paper, we investigate the problem of robust H∞ filter design for a class of discrete-time nonlinear systems. The systems under consider involves time-varying delays and parameters uncertainties. The main objective is to design a linear full-order filter to ensure that the resulting filtering error system is asymptotically stable with a prescribed H∞ performance level. By constructing an appropriate Lyapunov-Krasovskii functional, some novel sufficient conditions are established to guarantee the filter error dynamics system is robust asymptotically stable with H∞ performance γ , and the H∞ filter is designed in term of linear matrix inequalities. Finally, a numerical example is provided to illustrate the efficiency of proposed method.


Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3435-3449
Author(s):  
Bo Du

In this paper, the state estimation problem is dealt with for a class of neutral-type neural networks with mixed time delays. We aim at designing a state estimator to estimate the neuron states, through available output measurements, such that the dynamics of the estimation error is globally exponentially stable in the presence of mixed time delays. By using the Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions to guarantee the existence of the state estimators. A simulation example is exploited to show the usefulness of the derived LMI-based stability conditions.


2012 ◽  
Vol 503-504 ◽  
pp. 1458-1462
Author(s):  
Jun Cheng ◽  
Hong Zhu ◽  
Yu Ping Zhang ◽  
Yong Zeng

This paper investigate the problem of Robust H∞ filtering for stochastic networked control system with nonlinearities and missing measurements. In this paper, missing measurements and nonlinearities are considered. The sufficient conditions for the existence of the filter are given, thus, guaranteeing the filter error system exponentially stable in the mean-square sense and the performance satisfies a prescribed level by employing the new Lyapunov-Krasovskii functional and linear matrix inequality technique, some new sufficient conditions are obtained.


Author(s):  
S. Vimal Kumar ◽  
R. Sakthivel ◽  
M. Sathishkumar ◽  
S. Marshal Anthoni

This paper investigates the problem of robust finite time extended passive reliable filtering for Takagi–Sugeno (T–S) fuzzy systems with randomly occurring uncertainties, missing measurements, and time-varying delays. Moreover, two stochastic variables satisfying the Bernoulli random distribution are introduced to characterize the phenomenon of the randomly occurring uncertainties and missing measurements. By skillfully choosing a proper Lyapunov–Krasovskii functional (LKF), a new set of sufficient conditions in terms of linear matrix inequalities (LMI) is derived to ensure that the filtering error system is robustly stochastically finite time bounded (SFTB) with a desired extended passive performance index. Based on the obtained sufficient conditions, an explicit expression for the desired filter can be computed. Finally, two numerical examples are provided to show the effectiveness of the proposed filter design technique.


Sign in / Sign up

Export Citation Format

Share Document