scholarly journals The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Li Tian ◽  
Wenming Wang ◽  
Hui Qian

The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system.

2011 ◽  
Vol 243-249 ◽  
pp. 5845-5848
Author(s):  
Wen Ming Wang ◽  
Hong Nan Li ◽  
Guo Huan Liu ◽  
Li Tian

Using ABAQUS software, three dimensional finite element model of a transmission tower-line system is created. Nonlinear seismic responses under three seismic records with and without strain rate effect are studied. The results show that the strain rate effect on the transmission tower-line system is more obvious with an increase in intensity of the earthquake. The influence of strain rate on the top displacement and base shear of tower under certain seismic records is unneglectable. Also, it is shown that the strain rate effect on the deformation of wire is prominent. The strain rate effect on the axial force of wire is neglectable. This simple study reveals the importance of considering strain rate effect in seismic analysis for transmission tower-line system.


2016 ◽  
Vol 16 (07) ◽  
pp. 1550030 ◽  
Author(s):  
Li Tian ◽  
Rui-sheng Ma ◽  
Hong-nan Li ◽  
Yang Wang

The simulation of progressive collapse of a power transmission tower-line system subjected to extremely strong earthquakes is studied in this paper. A three-dimensional finite element model is established for the coupled system that combines three towers and four span lines based on a practical project. The birth to death technique is adopted to simulate the progressive collapse of the system by using the user subroutine VUMAT in ABAQUS. The simulation of progressive collapse of the transmission tower-line system under either single-component or multi-component earthquake excitations is conducted. The collapse path, fracture position and collapse resistant capacity of the transmission tower are investigated. The result shows that the effect of multi-component seismic excitations should be taken into account in simulation of progressive collapse of the transmission tower, since the behavior of towers under multi-component excitations is different from that of single-component excitations. In addition, incremental dynamic analysis (IDA) is carried out to verify the results obtained herein. The present result should prove useful to the seismic design of power transmission towers.


2012 ◽  
Vol 06 (04) ◽  
pp. 1250025 ◽  
Author(s):  
TIAN LI ◽  
LI HONGNAN ◽  
LIU GUOHUAN

The effect of multi-component multi-support excitations on the response of power transmission tower-line system is analyzed in this paper, using three-dimensional finite element time-stepping analysis of a transmission tower-line system based on an actual project. Multi-component multi-support earthquake input waves are generated based on the Code for Design of Seismic of Electrical Installations. Geometric non-linearity was considered in the analysis. An extensive parametric study was conducted to investigate the behavior of the transmission tower-line system under multi-component multi-support seismic excitations. The parameters include single-component multi-support ground motions, multi-component multi-support ground motions, the correlations among the three-component of multi-component multi-support ground motions, the spatial correlation of multi-component multi-support ground motions, the incident angle of multi-component multi-support seismic waves, the ratio of the peak values of the three-component of multi-component multi-support ground motions, and site condition with apparent wave velocity of multi-component multi-support ground motions.


2018 ◽  
Vol 22 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Li Tian ◽  
Haiyang Pan ◽  
Canxing Qiu ◽  
Ruisheng Ma ◽  
Qiqi Yu

The collapse problem of transmission tower upon strong winds was well noted in past few years. This article analyses the wind-induced collapse problem of a long-span transmission tower–line system. The member buckling effect was particularly considered. In doing so, a three-dimensional finite element model of the long-span transmission tower–line system was established in ABAQUS based on a practical project. The transmission tower and line were simulated by the frame and truss elements, respectively. The nonlinear behavior of a compressive member was simulated using the Marshall model, and the nonconvergence of numerical calculation was set to be the collapse criterion. The critical wind speed, damage position, and collapse probability were obtained from a collapse analysis of the long-span transmission tower–line system under different wind attack angles. The collapse mechanism of the long-span transmission tower–line system under a wind attack angle of 45° was investigated, and an incremental dynamic analysis was performed to evaluate the collapse-resistant capacity of the transmission tower. The study reveals that the interaction between bending moment and shear deformation is critical to the collapse of transmission tower.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Li Tian ◽  
Qiqi Yu ◽  
Ruisheng Ma

The seismic control of power transmission tower-line coupled system subjected to multicomponent excitations is studied in this paper. The schematic of tuned mass damper is introduced, and equations of motion of a system with tuned mass damper under multi-component excitations are proposed. Three-dimensional finite tower-line system models are created based on practical engineering in studying the response of this system without and with control. The time domain analysis takes into account geometric nonlinearity due to finite deformation. The optimal design of the transmission tower-line system with tuned mass damper is obtained according to different mass ratio. The effects of wave travel, coherency loss, and different site conditions on the system without and with control are investigated, respectively.


2021 ◽  
Vol 7 ◽  
Author(s):  
Vasiliki Terzi ◽  
Asimina Athanatopoulou

The present study aims to investigate the effects of the seismic vertical component on the pathology of Xana monument which is a typical caravanserai, constructed circa 1375–1385 and is located in the archeological site of the municipality of Trainapoulis, Greece. The monument’s plan is rectangular and the three-leaf masonry circumferential walls support a hemicylindrical dome constructed by bricks and mortar. The structure consisted of two consecutive parts: one for the travelers and one for the animals. Nowadays, the triangular roof, that covered the structure, and the first part of the monument do not exist. Xana suffers tensile cracks along the interior surface of the dome, a vertical fracture located on the northern wall and vertical tensile cracks located at the openings. A three-dimensional finite element model of the initial state of Xana is constructed. Non-linear material behavior is taken into account as well as soil-structure interaction effects. An adequate number of near-field earthquake events has been used, taking into account that they are related to significant vertical components. The structural seismic analysis is conducted for two cases. The first case refers to the action of the two horizontal-component of ground motions while the second one takes into account the three translational seismic components. The pathology estimation reveals important information concerning the structural effects due to vertical accelerations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaxiang Li ◽  
Biao Wang ◽  
Jian Sun ◽  
Shuhong Wang ◽  
Xiaohong Zhang ◽  
...  

Ice shedding causes transmission lines to vibrate violently, which induces a sharp increase in the longitudinal unbalanced tension of the lines, even resulting in the progressive collapse of transmission towers in serious cases, which is a common ice-based disaster for transmission tower-line systems. Based on the actual engineering characteristics of a 500 kV transmission line taken as the research object, a finite element model of a two-tower, three-line system is established by commercial ANSYS finite element software. In the modeling process, the uniform mode method is used to introduce the initial defects, and the collapse caused by ice shedding and its influencing parameters are systematically studied. The results show that the higher the ice-shedding height is, the greater the threat of ice shedding to the system; furthermore, the greater the span is, the shorter the insulator length and the greater the dynamic response of the line; the impact of ice shedding should be considered in the design of transmission towers.


2007 ◽  
Vol 34 (10) ◽  
pp. 1352-1363
Author(s):  
Rola Assi ◽  
Ghyslaine McClure

A simplified method is presented in this paper for the estimation of forces at the base of telecommunication towers mounted on building rooftops due to seismic excitation. Although some codes and standards propose simplified methods for the evaluation of base shear forces for towers founded on ground, no method yet exists for the evaluation of overturning moments. The proposed simplified method is based on numerical simulations using truncated modal superposition, which is widely used for seismic analysis of linear structures. The method requires the prediction of input seismic acceleration at the building–tower interface, the definition of an acceleration profile along the building-mounted tower, and the determination or evaluation of the mass distribution of the tower along its height. The method was developed on the basis of detailed dynamic analyses of three existing towers assumed to be mounted separately on three buildings. It was found that the method yields conservative results, especially for the overturning moments.Key words: self-supporting towers, earthquake, horizontal excitation, dynamic analysis, acceleration, modal superposition.


Author(s):  
Naibin Jiang ◽  
Feng-gang Zang ◽  
Li-min Zhang ◽  
Chuan-yong Zhang

The seismic analysis on reactor structure was performed with a new generation of finite element software. The amount of freedom degree of the model was more than twenty millions. The typical responses to operational basis earthquake excitation were given. They are larger than those with two-dimensional simplified finite element method, and the reasons of this phenomenon were analyzed. The feasibility of seismic analysis on large-scale three-dimensional finite element model under existing hardware condition was demonstrated, so some technological reserves for dynamic analysis on complicated equipments or systems in nuclear engineering are provided.


Author(s):  
Xing Fu ◽  
Wen-Long Du ◽  
Hong-Nan Li ◽  
Wen-Ping Xie ◽  
Kai Xiao ◽  
...  

The gust response factors (GRFs) of transmission towers in current standards are reviewed for synoptic winds. The collapse of most transmission towers has occurred under the high-intensity wind (HIW) caused by events such as typhoons, hurricanes, and downbursts. Thus, this paper studies the GRF of a transmission tower under the typhoon. First, the definition of GRF and its extended form for the transmission towers are developed. Then the wind speed simulation of a typhoon event is introduced. Based on the structural health monitoring (SHM) system installed on tower #32, the measured GRFs under the super typhoon Mangkhut are calculated. Then the finite element model (FEM) of the transmission tower-line system is established to simulate the dynamic response to further calculate the GRFs, which agrees well with the field measurements. Both the field measurement and simulation results show that the GRFs under the typhoon are larger than those under the synoptic wind and that the recommended GRFs in the Chinese standard underestimate the peak responses. Finally, a parametric analysis is performed, which demonstrates that the turbulence intensity, wind speed, and power-law exponent all have great effects on the GRFs of transmission towers. In the HIW-prone areas, it is recommended that the characteristics of the HIW can be considered in improving the GRF values to guarantee the structural safety of transmission towers.


Sign in / Sign up

Export Citation Format

Share Document