scholarly journals Nanosized Mesoporous Bioactive Glass/Poly(lactic-co-glycolic Acid) Composite-Coated CaSiO3Scaffolds with Multifunctional Properties for Bone Tissue Engineering

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mengchao Shi ◽  
Dong Zhai ◽  
Lang Zhao ◽  
Chengtie Wu ◽  
Jiang Chang

It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid) composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering.

2011 ◽  
Vol 493-494 ◽  
pp. 826-831
Author(s):  
A.C.B.M. Fook ◽  
Thiago Bizerra Fideles ◽  
R.C. Barbosa ◽  
G.T.F.S. Furtado ◽  
G.Y.H. Sampaio ◽  
...  

The application of a hybrid composite consisting of biopolymer and calcium phosphate, similar morphology and properties of natural bone, may be a way to solve the problem of the fragility of ceramics without reducing its mechanical properties, retaining the properties of biocompatibility and high bioactivity. This work aims at the preparation and characterization of three-dimensional scaffolds composite HA / biopolymers (chitosan and gelatin). The freeze-drying technique was employed in this study to obtain these frameworks and partial results showed the effectiveness of this method. This involved the study of structural, chemical and morphological frameworks, in order to direct the research suggested the application. The X Ray Diffraction (XRD) and infrared spectroscopy and Fourier transform (FTIR) results confirmed the formation of hydroxyapatite (HA) phase and the presence of characteristic bands of HA and biopolymers in all compositions. The microstructure of the scaffolds study conducted by Scanning Electron Microscopy (SEM) revealed the formation of longitudinally oriented microchannels with interconnected pores. In all compositions the porous scaffolds showed varying sizes and mostly larger than 100μm, and is therefore considered materials with potential for application in bone tissue engineering.


2013 ◽  
Vol 738 ◽  
pp. 38-41 ◽  
Author(s):  
Ting Ting Yan ◽  
Xiao Pei Wu ◽  
Yong Shun Cui ◽  
Qing Hua Chen ◽  
Zhong Da Yang

Porous calcium sulfate/hydroxyapatite whiskers composites scaffold is possible to be used in bone tissue engineering, for its biocompatibility, controllable degradation, and good mechanical properties. In this study, porous calcium sulfate/hydroxyapatite whisker composite scaffolds were fabricated by adding pore-forming agent and were characterized. The characteristics of the porous scaffolds were assessed by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and immersing testing techniques. It is shown that the scaffolds prepared in this article have the porous structure with the content of CaSO4 and HA. The scaffolds prepared in this article have been confirmed to be ideally used as biodegradable implants.


2017 ◽  
Vol 14 (4) ◽  
pp. 1355-1362
Author(s):  
Balraj Sundaram ◽  
M. C. John Milton

ABSTRACT: A biodegradable three-dimensional scaffolds have gathered attention and are widely studied for bone tissue engineering applications. In the present study, porous polycaprolactone scaffold entrapped with naringin loaded bovine serum albumin nanoparticles (PS-N-BSANP) has been engineered. Further, the prepared nanoparticles and interconnected porous scaffolds were characterized by scanning electron microscopy, X-ray diffraction and fourier transform infrared spectroscopy analysis. X- ray diffraction showed amorphization of naringin in PS-N-BSANP. In addition, sustained naringin release profile was observed from PS-N-BSANP for 12 days which showed a cumulative release of 52.54 micromolar (µM). Furthermore, conditioned medium from PS-N-BSANP showed an increased calcium deposition and collagen matrix formation under osteogenic conditions with C3H10T1/2 cell line. These results suggest that PS-N-BSANP enhanced the osteogenic differentiation potential in bone tissue engineering applications due to the controlled release of naringin.


Author(s):  
Mohammed Lakrat ◽  
Soufiane Fadlaoui ◽  
Mohamed Aaddouz ◽  
Ouahid El Asri ◽  
Mohammed Melhaoui ◽  
...  

Nanocrystalline hydroxyapatite (n-HAp), which has low crystallinity, has attracted great attention due to its similarity to the inorganic part of human bone. Therefore, many studies have focused on creating new formulations combining n-HAp with some biopolymers, such as chitosan, in order to imitate biological bone tissue. The importance of chitosan and its derivatives in biomedical applications has grown significantly in the last three decades due to its biodegradability and renewable source. Besides, chitosan and its derivatives present excellent biocompatibility and biofunctionality, which make them promising materials in bone tissue engineering. In the present study, the chitosan was, first, extracted from the shell of the freshwater crab species Potamon algeriense following demineralization, deproteinization, decolouration (raw chitin) and deacetylation (chitosan) steps. Then, a novel composite based on n-HAp and extracted chitosan (CTS) with varying chitosan contents, from 5% to 20% (w/w), was synthesized and characterized for potential application in tissue regeneration. The obtained composites were characterized using X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. The precipitated n-HAp/CTS nanocomposites similar to natural bone are promising composites for bone tissue engineering applications.


Author(s):  
Ana S. Neto ◽  
Daniela Brazete ◽  
José M.F. Ferreira

The combination of calcium phosphates (CaP) with bioactive glasses (BG) has received an increased interest in the field of bone tissue engineering. In the present work, biphasic calcium phosphates (BCP) obtained by hydrothermal transformation (HT) of cuttlefish bone (CB) were coated with a Sr-, Mg- and Zn-doped sol-gel derived BG. The scaffolds were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The initial CB structure was maintained after HT and the scaffold functionalization did not jeopardize the internal structure. The results of in vitro bio-mineralization after immersing the BG coated scaffolds in simulated body fluid (SBF) showed extensive formation of bone-like apatite onto the surface of the scaffolds. Overall, the functionalized CB derived BCP scaffolds revealed promising properties for their use in bone tissue engineering field.


2017 ◽  
Vol 28 (16) ◽  
pp. 1966-1983 ◽  
Author(s):  
Yamina Boukari ◽  
Omar Qutachi ◽  
David J. Scurr ◽  
Andrew P. Morris ◽  
Stephen W. Doughty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document