albumin nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

503
(FIVE YEARS 177)

H-INDEX

46
(FIVE YEARS 10)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 148
Author(s):  
Woo Tak Lee ◽  
Johyun Yoon ◽  
Sung Soo Kim ◽  
Hanju Kim ◽  
Nguyen Thi Nguyen ◽  
...  

Combined therapy using photothermal and photodynamic treatments together with chemotherapeutic agents is considered one of the most synergistic treatment protocols to ablate hypoxic tumors. Herein, we sought to fabricate an in situ-injectable PEG hydrogel system having such multifunctional effects. This PEG hydrogel was prepared with (i) nabTM-technique-based paclitaxel (PTX)-bound albumin nanoparticles with chlorin-e6 (Ce6)-conjugated bovine serum albumin (BSA-Ce6) and indocyanine green (ICG), named ICG/PTX/BSA-Ce6-NPs (~175 nm), and (ii) an albumin-stabilized perfluorocarbon (PFC) nano-emulsion (BSA-PFC-NEs; ~320 nm). This multifunctional PEG hydrogel induced moderate and severe hyperthermia (41−42 °C and >48 °C, respectively) at the target site under two different 808 nm laser irradiation protocols, and also induced efficient singlet oxygen (1O2) generation under 660 nm laser irradiation supplemented by oxygen produced by ultrasound-triggered PFC. Due to such multifunctionality, our PEG hydrogel formula displayed significantly enhanced killing of three-dimensional 4T1 cell spheroids and also suppressed the growth of xenografted 4T1 cell tumors in mice (tumor volume: 47.7 ± 11.6 and 63.4 ± 13.0 mm3 for photothermal and photodynamic treatment, respectively, vs. PBS group (805.9 ± 138.5 mm3), presumably based on sufficient generation of moderate heat as well as 1O2/O2 even under hypoxic conditions. Our PEG hydrogel formula also showed excellent hyperthermal efficacy (>50 °C), ablating the 4T1 tumors when the irradiation duration was extended and output intensity was increased. We expect that our multifunctional PEG hydrogel formula will become a prototype for ablation of otherwise poorly responsive hypoxic tumors.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Yao Miao ◽  
Tao Yang ◽  
Shuxu Yang ◽  
Mingying Yang ◽  
Chuanbin Mao

AbstractCancer has been a serious threat to human health. Among drug delivery carriers, protein nanoparticles are unique because of their mild and environmentally friendly preparation methods. They also inherit desired characteristics from natural proteins, such as biocompatibility and biodegradability. Therefore, they have solved some problems inherent to inorganic nanocarriers such as poor biocompatibility. Also, the surface groups and cavity of protein nanoparticles allow for easy surface modification and drug loading. Besides, protein nanoparticles can be combined with inorganic nanoparticles or contrast agents to form multifunctional theranostic platforms. This review introduces representative protein nanoparticles applicable in cancer theranostics, including virus-like particles, albumin nanoparticles, silk protein nanoparticles, and ferritin nanoparticles. It also describes the common methods for preparing them. It then critically analyzes the use of a variety of protein nanoparticles in improved cancer imaging and therapy.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Fengjie Liu ◽  
Meng Lan ◽  
Baoqi Ren ◽  
Lihong Li ◽  
Tengteng Zou ◽  
...  

Abstract Background Breast cancer is the most frequently occurring cancer among women. Baicalin has been shown to inhibit breast cancer proliferation, but poor aqueous solubility and unknown mechanism of action limit its application. This study aimed to investigate the antiproliferative effects of baicalin-loaded folic acid-modified albumin nanoparticles (FA-BSANPs/BA) in breast cancer MCF-7 cells and its relationship with autophagy and ROS-mediated p38 MAPK and Akt/mTOR signaling pathways. Cell viability was detected by MTT assay. Flow cytometry and fluorescence microscopy were used to detect cell cycle, apoptosis and autophagy. Western blot was used to detect protein expression. Results Compared with the control and free baicalin groups, FA-BSANPs/BA inhibited viability of MCF-7 cells and increased cells in S phase, apoptotic bodies, pro-apoptotic proteins, autophagy markers and autophagosomes. These effects could be reversed when combined with the autophagy inhibitor 3-methyladenine. FA-BSANPs/BA increased the levels of phosphorylated p38 MAPK, inhibited the levels of phosphorylated Akt and mTOR, and increased the level of ROS in MCF-7 cells. The effects of FA-BSANPs/BA could be reversed or enhanced using inhibitors of Akt, mTOR, p38 MAPK and ROS scavengers. Conclusions Encapsulation in folate albumin nanoparticles improved the antiproliferative activity of baicalin. FA-BSANPs/BA induced autophagy and apoptosis via ROS-mediated p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.


2022 ◽  
pp. 327-358
Author(s):  
Tamara Zwain ◽  
Neetika Taneja ◽  
Suha Zwayen ◽  
Aditi Shidhaye ◽  
Aparana Palshetkar ◽  
...  

2022 ◽  
Author(s):  
Ni Fan ◽  
Jia Zhao ◽  
Wei Zhao ◽  
Yanting Shen ◽  
Qingchun Song ◽  
...  

Obesity is hallmarked by endoplasmic reticulum (ER) stress, chronic inflammation and metabolic dysfunctions. The control of obesity is the key to prevent the onset of non-alcoholic fatty liver disease, diabetes,...


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
dina youssef ◽  
fatma sallam ◽  
Taher Salaheldin ◽  
Samah Darwish ◽  
Abeer El-Metwally ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document