scholarly journals Synthesis and Antimicrobial Studies of Pyrimidine Pyrazole Heterocycles

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Rakesh Kumar ◽  
Jyoti Arora ◽  
Sonam Ruhil ◽  
Neetu Phougat ◽  
Anil K. Chhillar ◽  
...  

Prompted from the diversity of the wider use and being an integral part of genetic material, an effort was made to synthesize pyrimidine pyrazole derivatives of pharmaceutical interest by oxidative cyclization of chalcones with satisfactory yield and purity. A novel series of 1,3-dimethyl-6-hydroxy-2,4-dioxo-5-(1′-phenyl-3′-aryl-1H-pyrazol-5′-yl)-1,2,3,4-tetrahydropyrimidines (5a–d) and 1,3-diaryl-6-hydroxy-4-oxo-2-thioxo-5-(1′-phenyl-3′-aryl-1H-pyrazol-5′-yl)-1,2,3,4-tetrahydropyrimidines (5e–l) has been synthesized. The structures of these compounds were established on the basis of FT-IR, 1H NMR, 13C NMR, and mass spectral analysis. All the synthesized compounds were screened for their antimicrobial activity against bacteria and fungi. Among all the compounds, 5g was found to be the most active as its MIC was 31.25 µg/mL against S. aureus and B. cereus. The compounds 5h, 5c, and 5e also possess antibacterial activity with MIC values as 62.50, 125.00, and 500.00 µg/mL, respectively. The compounds 5c and 5j were found to have antifungal activity against Aspergillus spp. As antifungal drugs lag behind the antibacterial drugs, therefore we tried in vitro combination of these two compounds with standard antifungal drugs (polyene and azole) against Aspergillus spp. The combination of ketoconazole with 5c and 5j showed synergy at 1 : 8 (6.25 : 50.00 µg/mL) and 1 : 4 (25 : 100 µg/mL) against A. fumigatus (ITCC 4517) and A. fumigatus (VPCI 190/96), respectively.

2009 ◽  
Vol 6 (4) ◽  
pp. 1205-1210 ◽  
Author(s):  
J. J. Vora ◽  
S. B. Vasava ◽  
K. C. Parmar ◽  
S. K. Chauhan ◽  
S. S. Sharma

Schiff base derivatives ofN-{(1E)-[3-(mono or di-substituted aryl)-1-phenyl-1H-pyrazol-4-yl]methylene{-4-methylpyridin-2-amine were synthesized by the acid catalyzed condensation of 3-(mono- or di- substituted aryl)-1-phenyl-1H-pyrazole-4-carbaldehyde derivatives with 4-methylpyridin-2-amine. Schiff base derivatives were characterized by FT-IR,1H-NMR, Mass spectral analysis and elemental analysis. All the synthesized compounds have been screened for their antimicrobial activities by using broth dilution method.


Author(s):  
Nilay Shah ◽  
Pineshkumar N. Patel ◽  
Dhanji Rajani ◽  
Denish C. Karia

In present work, novel derivatives of substituted N-(4-(8-methoxy-2-oxo-2H-chromen-3-yl) thiazol-2-yl) amide have been synthesized. The solvent free reaction of 2-Hydroxy-3-methoxybenzaldehyde with Ethyl acetoacetate in presence of Piperidine catalyst produces 3-acetyl-8-methoxy-2H-chromen-2-one (C). Compound C was α- brominated using CuBr2and subsequently cyclized using Thiourea to produce 3-(2-aminothiazol-4-yl)-8-methoxy-2H-chromen-2-one as main scaffold (E). This scaffold E was finally reacted with different Acid chloride to isolate title compound derivatives. The chemical structures of synthesized compounds were confirmed by1H-NMR, FT-IR and Mass spectral/LCMS analysis. The synthesized compounds were screened for potential Antimicrobial, Antifungal and Antimalarial activity.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (02) ◽  
pp. 7-14
Author(s):  
S. Sonker ◽  
◽  
D. Pathak

The prime aim of the present investigation was to synthesize a series of novel derivatives of pyrazole based quinolines by the reaction of substituted chalcones and characterized them by their physical and spectral data. All the compounds were confirmed by TLC and melting point. The structures of the synthesized compounds have been established on the basis of IR, 1 H NMR, EIMS spectral analysis and elemental analysis. The synthesized target compounds were screened for their anti-malarial activity using Vero cell line (C1008; Monkey kidney fibroblast) against Plasmodium falciparum (3D7 strain) with the standard and SI was measured by using IC50 and CC50 of tested compounds. Additionally, the synthesized compounds were evaluated for their in vitro antimicrobial activity against two each gram positive, gram negative and antifungal strains.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Basavapatna N. Prasanna Kumar ◽  
Kikkeri N. Mohana ◽  
Lingappa Mallesha ◽  
Kikkeri P. Harish

A series of new 1,3,4-oxadiazole derivatives, 4(a–h), containing 5-chloro-2-methoxy benzohydrazide moiety were synthesized by the reaction of 5-chloro-2-methoxybenzoate with different aromatic carboxylic acids. These newly synthesized compounds were characterized by FT-IR, 1H NMR, mass spectra, and also by elemental analysis. All the newly synthesized compounds were screened for their antibacterial and antifungal activities. Antimicrobial studies revealed that compounds 4c, 4f, and 4g showed significant activity against tested strains.


Author(s):  
Devidas G. Anuse ◽  
Suraj N. Mali ◽  
Bapu R. Thorat ◽  
Ramesh S. Yamgar ◽  
Hemchandra K. Chaudhari

Background: Antimicrobial resistance is major global health problem, which is being rapidly deteriorating the quality of human health. Series of substituted N-(benzo[d]thiazol-2-yl)-2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)acetamide (3a-j) were synthesized from substituted N-(benzo[d]thiazol-2-yl)-2-chloroacetamide/bromopropanamide (2a-j) and 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole (2) and further evaluated for their docking properties and antimicrobial activity. Methods: All synthesized compounds were characterized by FT-IR, NMR and Mass spectral analysis. All compounds were allowed to dock against different antimicrobial targets having PDB ID: 1D7U and against common antifungal target having PDB ID: 1EA1. Results: The compounds 3d and 3h were showed good activity against Methicillin-resistant Staphylococcus aureus (MRSA, resistance Gram-positive bacteria). All synthesized compounds showed good to moderate activity against selected bacterial and fungal microbial strains. If we compared the actual in-vitro antimicrobial activity and in-silico molecular docking study, we found that molecules 3i and 3h were more potent than the others. Conclusion: Our current study would definitely pave the new way towards designing and synthesis of more potent 2-aminobenzothiazoles derivatives.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
S. Nagashree ◽  
P. Mallu ◽  
L. Mallesha ◽  
S. Bindya

A series of methyl-2-aminopyridine-4-carboxylate derivatives,3a–f,were synthesized in order to determine theirin vitroantimicrobial activity. The chemical structures of the synthesized compounds were confirmed by elemental analyses, FT-IR, and1H NMR spectral studies. Among the synthesized compounds,3cand3dshowed good antimicrobial activity compared to other compounds in the series.


Author(s):  
Aseel Alsarahni ◽  
Zuhair Muhi Eldeen ◽  
Elham Al-kaissi ◽  
Ibrahim Al- Adham ◽  
Najah Al-muhtaseb

<p><strong>Objective: </strong>To design and synthesize amino acetylenic and thiocarbonate of 2-mercapto-1,3-benthiazoles as potential antimicrobial agents.</p><p><strong>Methods: </strong>A new series of 2-{[4-(t-amino-1-yl) but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole derivatives (AZ1-AZ6), and S-1,3-benzothiazol-2-yl-O-alkyl carbonothioate derivatives were synthesised, with the aim that the target compounds show new and potential antimicrobial activity. The elemental analysis was indicated by the EuroEA elemental analyzer, and biological characterization was via IR, <sup>1</sup>H-NMR, [13]C-NMR, DSC were determined with the aid of Bruker FT-IR and Varian 300 MHz spectrometer using DMSO-d<sub>6</sub> as a solvent.<em> </em><em>In vitro </em>antimicrobial activity, evaluation was done for the synthesised compounds, by agar diffusion method and broth dilution test. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined. <em></em></p><p><strong>Results: </strong>The IR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, DSC and elemental analysis were consistent with the assigned structures. Compound of 2-{[4-(4-methylpiperazin-1-yl)but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole (AZ1), 2-{[4-(2-methylpiperidin-1-yl)but-2-yn-1-yl]sulfanyl}-1,3-benzothiazole (AZ2), 2-{[4-(piperidin-1-yl) but-2-yn-1-yl]sulfanyl}-1, 3-benzothiazole (AZ6), S-1,3-benzothiazol-2-yl-O-ethyl carbonothioate (AZ7), and S-1,3-benzothiazol-2-yl-O-(2-methylpropyl) carbonothioate (AZ9) showed the highest antimicrobial activity against <em>Pseudomonas aeruginosa </em>(<em>P. aeruginosa</em>), AZ-9 demonstrated the highest antifungal activity against <em>Candida albicans </em>(<em>C. albicans</em>), with MIC of 31.25 µg/ml.</p><p><strong>Conclusion: </strong>These promising results promoted our interest to investigate other structural analogues for their antimicrobial activity further.</p>


NANO ◽  
2013 ◽  
Vol 08 (04) ◽  
pp. 1350042 ◽  
Author(s):  
JING WANG ◽  
LI GUO ◽  
LI FANG MA

In this paper, we firstly synthesized glycyrrhetinic acid-modified double amino-terminated poloxamer 188 (GA–NH–POLO–NH–GA). The structure of the synthesized compound was confirmed by 1H-NMR and Fourier transform infrared (FT-IR) spectroscopy. Then the nanoparticles composed of GA–NH–POLO–NH–GA/chitosan (GA–NH–POLO–NH–GA/CTS) were prepared by an ionic gelation process. The characterization of the nanoparticles was measured by dynamic light scattering (DLS) and scanning electron microscope (SEM). The results showed that the nanoparticles were well dispersed with a spherical shape and the particle size was distributed between 100 nm and 300 nm. The cytotoxicity based on MTT assay against cells (QGY-7703 cells and L929 cells) showed that the nanoparticles had low toxicity and good biocompatibility. The encapsulation efficiency and drug loading of 5-fluorouracil-loaded nanoparticles (5-FU nanoparticles) were measured by high-performance liquid chromatography (HPLC) and fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorbance. The encapsulation of 5-Fu-loaded CTS nanoparticles was 12.8% and the drug loading was 2.9%, while the encapsulation of 5-Fu-loaded GA–NH–POLO–NH–GA/CTS nanoparticles was 20.9% and the drug loading was 3.36%. The release profile showed that the GA–NH–POLO–NH–GA/CTS nanoparticles were available for sustained release of 5-Fu. The GA–NH–POLO–NH–GA/CTS nanoparticles have a higher affinity to the QGY-7703 cells, so indicated that the GA–NH–POLO–NH–GA/CTS nanoparticles have the capacity of liver-targeting in vitro.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5581
Author(s):  
Raju Suresh Kumar ◽  
Dhaifallah M. Al-thamili ◽  
Abdulrahman I. Almansour ◽  
Natarajan Arumugam ◽  
Faruq Mohammad

With an aim to develop more effective and affordable anticancer agents possessing a unique mechanism of action, we designed and synthesized derivatives of spirooxindole-pyrrolidine heterocyclic hybrids in good yields through a one-pot three-component (3+2) cycloaddition strategy. The synthesized compounds were characterized thoroughly for the physicochemical properties by making use of FT-IR, NMR spectroscopy, and mass spectrometry. Further, these compounds have been evaluated for the influence of anticancer activity against HepG2 cells up to 200 µg/mL concentration. The highly active molecular scaffold was tested for the in-depth mechanistic studies, and it was found that the major pathway of cell death is apoptosis which occurs through the induction of reactive oxygen species followed by the involvement of caspases.


2020 ◽  
Vol 32 (6) ◽  
pp. 1437-1442
Author(s):  
Panneerselvam Kalaivani ◽  
Jayaraman Arikrishnan ◽  
Mannuthusamy Gopalakrishnan

In this study, a new series of (E)-N-(4-(3-(3,5-dialkylphenyl)acryloyl)phenyl)-2-(1H-1,2,4-triazol-1- yl)acetamide (32-41) was synthesized, characterized by FT-IR, 1H NMR, 13C NMR and Mass spectral analysis and evaluated for their in vitro antibacterial and antifungal activities. The docking study of the newly synthesized compounds was performed and results showed good binding mode in the active site of 1T9U protein. The zone of inhibition concentration was tested for the synthesized compounds against five bacterial and three fungal strains. Compounds 34 and 37 have good antibacterial activity. Compounds 3, 4 and 6 shows moderate inhibition against the antifungal activity.


Sign in / Sign up

Export Citation Format

Share Document