scholarly journals Application of Multiwalled Carbon Nanotube Nanofluid for 450 W LED Floodlight

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Bui Hung Thang ◽  
Le Dinh Quang ◽  
Nguyen Manh Hong ◽  
Phan Hong Khoi ◽  
Phan Ngoc Minh

Overheating of the high-power light emitting diode (LED) has a dramatic effect on the chip’s lifetime. Heat dissipation for high-power LED is becoming a major challenge for researchers and technicians. Compared with the air cooling method, the liquid cooling method has many advantages and high efficiency because of higher specific heat capacity, density, and thermal conductivity. Carbon nanotubes with remarkable thermal properties have been used as additives in liquids to increase the thermal conductivity. In this work, multiwalled carbon nanotubes nanofluid (MWCNTs nanofluid) was used to enhance heat dissipation for 450 W LED floodlight. MWCNTs nanofluid was made by dispersing the OH functionalized MWCNTs in ethylene glycol/water solution. The concentration of MWCNTs in fluid was in the range between 0.1 and 1.3 gram/liter. The experimental results showed that the saturated temperature of 450 W LED chip was 55°C when using water/ethylene glycol solution in liquid cooling system. In the case of using MWCNTs nanofluid with 1.2 gram/liter of MWCNTs’ concentration, the saturated temperature of LED chip was 50.6°C. The results have confirmed the advantages of the MWCNTs for heat dissipation systems for high-power LED floodlight and other high power electronic devices.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bui Hung Thang ◽  
Pham Van Trinh ◽  
Nguyen Van Chuc ◽  
Phan Hong Khoi ◽  
Phan Ngoc Minh

Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (2000 W/m·Kcompared with thermal conductivity of Ag 419 W/m·K). This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED). In this work, multiwalled carbon nanotubes (MWCNTs) based liquid was made by COOH functionalized MWCNTs dispersed in distilled water with concentration in the range between 0.2 and 1.2 gram/liter. MWCNT based liquid was used in liquid cooling system to enhance thermal dissipation for computer processor. By using distilled water in liquid cooling system, CPU’s temperature decreases by about 10°C compared with using fan cooling system. By using MWCNT liquid with concentration of 1 gram/liter MWCNTs, the CPU’s temperature decreases by 7°C compared with using distilled water in cooling system. Theoretically, we also showed that the presence of MWCNTs reduced thermal resistance and increased the thermal conductivity of liquid cooling system. The results have confirmed the advantages of the MWCNTs for thermal dissipation systems for theμ-processor and other high power electronic devices.


2011 ◽  
Vol 130-134 ◽  
pp. 3967-3971
Author(s):  
San Shan Hung ◽  
Hsing Cheng Chang ◽  
Jhih Wei Huang

The main result of this study is to propose a liquid-cooling system for high power LED heat dissipation treatment. By using thermal dissipation mechanism and based on ANSYS CFX numerical analysis of change the parameters of cold plat. We will get the optimal heat dissipation structure. The experimental results show that the Taguchi method of thermal mechanisms in this study of the four control factors affecting the order: k value of thermal compound > fan power > liquid type > pump flow rate, and to identify the best combination of factor levels. When the heat source is 90 W, the best factor of the experimental cooling system thermal resistance is 0.563K/W. Nomenclature


Author(s):  
Yuanlong Chen ◽  
Tingbo Hou ◽  
Minqiang Pan

With a substantial increase in thermal power density, the operating temperature of high-power light-emitting diodes (LEDs) rises rapidly, exerting a notable effect on chipsets’ performance. A water-cooled microchannel radiator and an air-cooled radiator are proposed to solve this problem. The effects of key factors of both radiators on heat dissipation in a high-power LED chipsets, and general comparisons between each method, are analyzed via Fluent. The simulation results indicate that heat dissipation from the water-cooled microchannel radiator is readily affected by the microchannel’s flow rate and aspect ratio. A larger flow rate and larger aspect ratio favor improved heat dissipation in the water-cooled microchannel radiator. Heat dissipation in the air-cooled radiator is related to volumetric flow rate, rib number, rib height, rib thickness, and substrate thickness. A larger volumetric flow rate, rib number, and rib height favor heat dissipation in the air-cooled radiator. However, there is a critical thickness value: if the thickness is less than the critical value, heat dissipation is greatly affected by rib thickness and substrate thickness, if the thickness is larger than the critical value, the influence is insignificant. The high-power LED chipsets’ temperature is also related to the insulating substrate’ input power and thermal conductivity. A large input power leads to a substantial increase in temperature, and larger thermal conductivity of the insulating substrate minimizes temperature increase in the high-power LED chipsets. When comparing the two radiators, results show an air-cooled radiator should be used in low-power LED chipsets. When an air-cooled radiator cannot satisfy the chipset’s needs, a water-cooled microchannel radiator should be utilized.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Nguyen Trong Tam ◽  
Pham Van Trinh ◽  
Nguyen Ngoc Anh ◽  
Nguyen Tuan Hong ◽  
Phan Ngoc Hong ◽  
...  

In this study, the successful hydroxyl functionalization of carbon nanotubes (MWCNT-OH) was prepared by chemical treatments and characterized by Raman and FTIR spectra. MWCNT-OH was successfully dispersed into ethylene glycol (EG) with the Tween-80 surfactant by an ultrasonication method to prepare nanofluids. Thermal conductivity of nanofluid was investigated, and a maximum thermal conductivity enhancement about 24% at 50°C was obtained with nanofluid containing 0.64 vol.% MWCNT concentration. The photothermal conversion performance of nanofluid was also investigated by measuring the change of the temperature under lighting from a solar simulator. The measurement results showed that the highest photothermal conversion was obtained about 4.2% after a 30 min lighting with nanofluid containing 0.48 vol.% CNT concentration compared to ethylene glycol. These obtained results have propose a potential application of CNTs in nanofluids for solar absorption.


2012 ◽  
Vol 468-471 ◽  
pp. 2038-2041
Author(s):  
Tie Cheng Gao ◽  
Su Ying Yao ◽  
Yan Jin Ai

High brightness white light emitting diodes(LEDs) are very promising in many new illumination applications. This paper is to investigate the cooling solutions of a LED heallamp. Air cooling with heat sink were proved to be unsuitable. A cooling method based on heat pipe is adopted which is proved to be effective. Simulations were performed with Flotherm software to investigate the thermal permance.A sample of LED headlamp is fabricated based on the structure of a certain sedan combined headlamp. The testing results are in accordance with the simulation results


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
K. Ch. Sekhar ◽  
Raviteja Surakasi ◽  
ilhan Garip ◽  
S. Srujana ◽  
V. V. Prasanna Kumar ◽  
...  

A review of multiwalled carbon nanotubes as solar thermic fluids and their thermophysical properties is done in this article. The basic fluids were ethylene glycol and water in ratios of 100 : 0, 90 : 10, and 80 : 20. To investigate how surface modification impacts thermophysical properties, three base fluids were combined with surfactant-assisted MWCNTs and oxidized MWCNTs in weight fractions of 0.125, 0.25, and 0.5 percent, respectively. It takes two months to check whether the dispersion stays constant. Thermal conductivity and viscosity measurement were done using heated discs and Anton Paar viscometers. Using oxidized MWCNTs to disperse, the base fluids increased thermal conductivity by 15% to 24%. Surfactant-assisted MWCNTs in nanofluids perform worse than oxidized MWCNTs. The dynamic viscosity of nanofluids is higher than that of basic fluids between 50 and 70°C. During a mathematical computation, all of the MWCNT weight fractions and ethylene glycol volume percentages are included. The correlation may be a good fit for the experimental data within limits. The characteristics are forecasted using feed-forward backpropagation. In this research, buried layer neurons and factors are examined.


2017 ◽  
Vol 59 (02) ◽  
pp. 10-13
Author(s):  
Trong Tam Nguyen ◽  
◽  
Hung Thang Bui ◽  
Ngoc Minh Phan ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document