scholarly journals Low Intraprostatic DHT Promotes the Infiltration of CD8+ T Cells in BPH TissuesviaModulation of CCL5 Secretion

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yu Fan ◽  
Shuai Hu ◽  
Jie Liu ◽  
Fei Xiao ◽  
Xin Li ◽  
...  

Clinical studies suggested thatandrogen might be associated with infiltrating T cells in prostate of benign prostatic hyperplasia (BPH) patients, but detail of T-cell subset and mechanism still remained unclear. The present study tested the hypothesis that intraprostatic 5α-dihydrotestosterone (DHT) exerts effects on T cells recruitment by BPH epithelial cells. Prostate tissues from 64 cases of BPH patients after transurethral resection of prostate (TURP) were divided into 2 groups: (1) no medication history; (2) administration of 5α-reductase type II inhibitor-finasteride 5 mg daily for at least 6 months before surgery. Group 2 presented significantly higher CD8+ T cells infiltration than group 1, but no changes in CD4+ T cells (immunohistochemistry and flow cytometry).In vitrostudy more CD8+ T cell migrated to the prostate tissue lysates from group 2 and BPH-1 cells in low DHT condition. Transcription of chemokine (C-C motif) Ligand 5 (CCL5) mRNA in BPH-1 cells and chemokine (C-C motif) receptor 5 (CCR5) mRNA in CD8+ T cells were upregulated in low DHT condition (q-PCR). CCL5 expression was also identified to be higher in group 2 prostate tissues by IHC. This study suggested that intraprostatic DHT may participate in regulating inflammatory response which was induced by human prostatic epithelial cell, via modulating CCL5 secretion.

2019 ◽  
Vol 10 ◽  
Author(s):  
Maria Kuznetsova ◽  
Julia Lopatnikova ◽  
Julia Shevchenko ◽  
Alexander Silkov ◽  
Amir Maksyutov ◽  
...  

1997 ◽  
Vol 186 (9) ◽  
pp. 1407-1418 ◽  
Author(s):  
Dörte Hamann ◽  
Paul A. Baars ◽  
Martin H.G. Rep ◽  
Berend Hooibrink ◽  
Susana R. Kerkhof-Garde ◽  
...  

Human CD8+ memory- and effector-type T cells are poorly defined. We show here that, next to a naive compartment, two discrete primed subpopulations can be found within the circulating human CD8+ T cell subset. First, CD45RA−CD45R0+ cells are reminiscent of memory-type T cells in that they express elevated levels of CD95 (Fas) and the integrin family members CD11a, CD18, CD29, CD49d, and CD49e, compared to naive CD8+ T cells, and are able to secrete not only interleukin (IL) 2 but also interferon γ, tumor necrosis factor α, and IL-4. This subset does not exert cytolytic activity without prior in vitro stimulation but does contain virus-specific cytotoxic T lymphocyte (CTL) precursors. A second primed population is characterized by CD45RA expression with concomitant absence of expression of the costimulatory molecules CD27 and CD28. The CD8+CD45RA+CD27− population contains T cells expressing high levels of CD11a, CD11b, CD18, and CD49d, whereas CD62L (L-selectin) is not expressed. These T cells do not secrete IL-2 or -4 but can produce IFN-γ and TNF-α. In accordance with this finding, cells contained within this subpopulation depend for proliferation on exogenous growth factors such as IL-2 and -15. Interestingly, CD8+CD45RA+CD27− cells parallel effector CTLs, as they abundantly express Fas-ligand mRNA, contain perforin and granzyme B, and have high cytolytic activity without in vitro prestimulation. Based on both phenotypic and functional properties, we conclude that memory- and effector-type T cells can be separated as distinct entities within the human CD8+ T cell subset.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 578-578 ◽  
Author(s):  
Marie Bleakley ◽  
Audrey Mollerup ◽  
Colette Chaney ◽  
Michele Brown ◽  
Stanley R. Riddell

Abstract Graft versus host disease (GVHD) after allogeneic stem cell transplant (SCT) is initiated by the activation of alloreactive T cells by host dendritic cells (DC) in lymphoid tissue. Studies in murine models have demonstrated that selective depletion of naïve T cells abrogates GVHD in major and minor histocompatibility antigen (miH) mismatched SCT and provides for rapid reconstitution of memory T cell responses to pathogens. This suggests the memory subset may lack a sufficient repertoire of alloreactive T cells or fail to localize to sites where GVHD is initiated. If such a strategy were effective in humans, morbidity from GVHD would be reduced, but the graft versus leukemia (GVL) effect might be compromised. To explore the potential of this approach in humans, we developed a novel limiting dilution assay using DC as stimulator cells in vitro to analyze the frequency and repertoire of human miH reactive T cells in highly purified naïve and memory T cell subsets obtained from HLA identical volunteer donor pairs. For each pair, mature DC were derived by differentiation of CD14+ monocytes in vitro from one volunteer, and pure (>97%) populations of naïve (CD62L+, CD45 RA+, CD45RO-) and memory (CD45RO+) CD8 T cells were obtained by FACS sorting of CD8 enriched PBMC from the respective HLA identical sibling. Memory and naïve T cells were cultured for 12 days in 96 well plates at a range of concentrations with DC at a 30:1 ratio and IL12 (10 ng/ml), and IL15 (10 ng/ml) was added on day 7. On day 12, the wells were screened against target cells from each volunteer in a chromium release assay (CRA) to quantitative T cells with reactivity against miH. All wells with reactivity in this screening assay were subsequently expanded using anti CD3 antibody and IL2 and retested by CRA to validate the results of the screening assay. In multiple experiments using different HLA matched pairs, T cells with specific and reproducible cytotoxic activity (>15% lysis) against target cells from the DC donor but not autologous targets were only isolated from wells plated with naïve CD8 T cells, and there was no reproducible cytotoxicity from wells plated with memory T cells. This data demonstrates that miH specific CD8 T cells are found predominantly, and possibly exclusively, in the naïve T cell subset in humans. This data is consistent with a dramatically reduced repertoire of miH alloreactive T cells in the memory T cell pool and supports the development of protocols to prevent GVHD by selective depletion of CD45RA+ CD8+ T cells from the hematopoietic cell graft. However, T cells specific for miH also contribute to the GVL effect and CD45RA depletion would be expected to compromise antileukemic activity. Using the above approach for isolating miH specific CTL from naïve CD8 T cells, we have found a diverse repertoire of alloreactivity in most cultures and identified a subset of T cell lines and clones specific for miH presented selectively on hematopoietic cells. These T cells recognize primary ALL and AML samples that express the restricting HLA allele in vitro. MiH specific T cell clones can be reliably generated by this method using DC derived from monocytes of patients with advanced leukemia. Thus, it may be feasible to utilize this approach to isolate T cells specific for hematopoietic restricted miH for adoptive therapy as an adjunct to CD45RA depletion to preserve the GVL effect and allow separation of GVL from GVHD.


2021 ◽  
Author(s):  
Jing Li ◽  
Maxim Elisha Zaslavsky ◽  
Yapeng Su ◽  
Michael Sikora ◽  
Vincent van Unen ◽  
...  

Previous reports show that Ly49+CD8+ T cells can suppress autoimmunity in mouse models of autoimmune diseases. Here we find a markedly increased frequency of CD8+ T cells expressing inhibitory Killer cell Immunoglobulin like Receptors (KIR), the human equivalent of the Ly49 family, in the blood and inflamed tissues of various autoimmune diseases. Moreover, KIR+CD8+ T cells can efficiently eliminate pathogenic gliadin-specific CD4+ T cells from Celiac disease (CeD) patients' leukocytes in vitro. Furthermore, we observe elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 and influenza-infected patients, and this correlates with disease severity and vasculitis in COVID-19. Expanded KIR+CD8+ T cells from these different diseases display shared phenotypes and similar T cell receptor sequences. These results characterize a regulatory CD8+ T cell subset in humans, broadly active in both autoimmune and infectious diseases, which we hypothesize functions to control self-reactive or otherwise pathogenic T cells.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2946-2946
Author(s):  
Scott R Best ◽  
Adam Kittai ◽  
Taylor Rowland ◽  
Nur Bruss ◽  
Stephen E Spurgeon ◽  
...  

Abstract Introduction: T cells from patients with CLL and lymphoma show highly impaired immune synapse formation, cytotoxic function, and adhesion and migration capabilities. Recent advances in immunooncology led to the emergence of therapeutic agents that permit reversal of T-cell exhaustion in cancer. However, rational development of novel combination approaches in immunotherapy requires detailed understanding of how targeted therapies influence T-cell function. We have shown that pevonedistat (TAK-924), an investigational NAE inhibitor, abrogates NFκB activation in CLL cells. Pevonedistat forms a covalent adduct with NEDD8, a ubiquitin-like modifier, thereby disrupting its interaction with NAE. This leads to reduced activity of Cullin-RING ligases (CRLs), a group of ubiquitin ligases that require modification by NEDD8 for their function. Ultimately, a decrease in CRL activity leads to reduced ubiquitination and proteasomal degradation of CRL substrates, extending the half-life of these proteins, including inhibitor of NFκB (IκB). Moreover, NFκB is critical in T-cell function. However, limited data exist on the effects of targeting neddylation on T-cell response. Here, we demonstrate that targeting neddylation in vitro preserves T-cell functionality and may lead to favorable T-cell population shifts in CLL. Methods: Peripheral blood mononuclear cells were isolated from patients with CLL (n=50), and T cells were purified using Dynabeads. Pevonedistat was obtained from Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited (Cambridge, MA). Results: In vitro T-cell receptor (TCR; CD3/CD28) stimulation induced T-cell activation and proliferation. Continuous treatment of T cells with pevonedistat led to rapid (2 hour) disruption of cullin neddylation, followed by a significant reduction in activity of NFκB and NFAT as assessed by immunoblotting and immunofluorescence. Despite this reduction, CD4 and CD8 T cells continued to respond to TCR stimulation, with relative abundance of early markers of activation (CD40L, CD69). However, we observed reduced expression of CD25 and PD-1 at 72 hours. Continuous treatment with pevonedistat led to a dose-dependent decrease in IL-2 secretion and reduced proliferation of the CD4 T-cell subset (CFSE, Ki-67) but did not induce apoptosis. Unlike CLL cells, CD4 T cells did not undergo DNA re-replication and G2/M arrest in response to pevonedistat. We further analyzed T-cell subsets following TCR stimulation. Concurrent treatment with pevonedistat led to an increase in IFNγ-secreting CD4 T cells, whereas IL-4 production decreased, suggesting a shift toward the Th1 phenotype. Furthermore, we observed a robust decrease of the iTreg population, accompanied by downregulation of FoxP3 mRNA and protein within the CD4 T-cell subset, indicating that targeting neddylation may help to reverse the immunosuppressive phenotype in CLL. To mimic the in vivo pharmacokinetics of pevonedistat, we performed drug washouts where CLL-derived T cells were exposed to 2-hour pulse treatment with 1 µM pevonedistat prior to TCR stimulation. Under these conditions, cullin neddylation and NFκB activity began to recover by 8 hours, with near complete recovery by 24 hours. Moreover, pevonedistat did not disrupt allogeneic (OCI-LY19 cells) or autologous (CD40L-stimulated CLL cells) T-cell cytotoxicity. Meanwhile, CD8 T cells continued to produce perforin and granzyme B. Conclusions: Our data suggest that pharmacologic targeting of NAE preserves T-cell cytotoxic function and may enhance anti-tumor immunity in CLL. Combined with our earlier reports that targeting NAE kills CLL cells under lymph node-mimicking conditions, these data provide a strong rationale for continued investigation of pevonedistat in CLL and lymphoid malignancies. Disclosures Spurgeon: Bristol Myers Squibb: Research Funding; Gilead Sciences, Inc.: Consultancy, Research Funding; Oncternal: Research Funding; Acerta: Research Funding; Genentech: Research Funding; Janssen: Research Funding; Pharmacyclics: Consultancy, Research Funding; MEI Pharma: Consultancy. Berger:Takeda Pharmaceuticals International Co.: Employment. Danilov:Gilead Sciences: Consultancy, Research Funding; Astra Zeneca: Consultancy; Verastem: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Aptose Biosciences: Research Funding; Takeda Oncology: Research Funding; TG Therapeutics: Consultancy; Bayer Oncology: Consultancy, Research Funding.


Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3463-3471 ◽  
Author(s):  
Christoph Hess ◽  
Terry K. Means ◽  
Patrick Autissier ◽  
Tonia Woodberry ◽  
Marcus Altfeld ◽  
...  

CD8 T cells play a key role in host defense against intracellular pathogens. Efficient migration of these cells into sites of infection is therefore intimately linked to their effector function. The molecular mechanisms that control CD8 T-cell trafficking into sites of infection and inflammation are not well understood, but the chemokine/chemokine receptor system is thought to orchestrate this process. Here we systematically examined the chemokine receptor profile expressed on human CD8 T cells. Surprisingly, we found that CXC chemokine receptor 1 (CXCR1), the predominant neutrophil chemokine receptor, defined a novel interleukin-8/CXC ligand 8 (IL-8/CXCL8)–responsive CD8 T-cell subset that was enriched in perforin, granzyme B, and interferon-γ (IFNγ), and had high cytotoxic potential. CXCR1 expression was down-regulated by antigen stimulation both in vitro and in vivo, suggesting antigen-dependent shaping of the migratory characteristics of CD8 T cells. On virus-specific CD8 T cells from persons with a history of Epstein-Barr virus (EBV) and influenza infection, CXCR1 expression was restricted to terminally differentiated effector memory cells. In HIV-1 infection, CXCR1-expressing HIV-1–specific CD8 T cells were present only in persons who were able to control HIV-1 replication during structured treatment interruptions. Thus, CXCR1 identifies a subset of CD8 T cells poised for immediate cytotoxicity and early recruitment into sites of innate immune system activation.


2015 ◽  
Vol 11 (3) ◽  
pp. e1004671 ◽  
Author(s):  
Krista E. van Meijgaarden ◽  
Mariëlle C. Haks ◽  
Nadia Caccamo ◽  
Francesco Dieli ◽  
Tom H. M. Ottenhoff ◽  
...  

2002 ◽  
Vol 197 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Melanie S. Vacchio ◽  
Richard J. Hodes

Whereas ligation of CD28 is known to provide a critical costimulatory signal for activation of CD4 T cells, the requirement for CD28 as a costimulatory signal during activation of CD8 cells is less well defined. Even less is known about the involvement of CD28 signals during peripheral tolerance induction in CD8 T cells. In this study, comparison of T cell responses from CD28-deficient and CD28 wild-type H-Y–specific T cell receptor transgenic mice reveals that CD8 cells can proliferate, secrete cytokines, and generate cytotoxic T lymphocytes efficiently in the absence of CD28 costimulation in vitro. Surprisingly, using pregnancy as a model to study the H-Y–specific response of maternal T cells in the presence or absence of CD28 costimulation in vivo, it was found that peripheral tolerance does not occur in CD28KO pregnants in contrast to the partial clonal deletion and hyporesponsiveness of remaining T cells observed in CD28WT pregnants. These data demonstrate for the first time that CD28 is critical for tolerance induction of CD8 T cells, contrasting markedly with CD28 independence of in vitro activation, and suggest that the role of CD28/B7 interactions in peripheral tolerance of CD8 T cells may differ significantly from that of CD4 T cells.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


1994 ◽  
Vol 179 (2) ◽  
pp. 413-424 ◽  
Author(s):  
G Dadaglio ◽  
S Garcia ◽  
L Montagnier ◽  
M L Gougeon

We have analyzed the V beta usage by CD4+ and CD8+ T cells from human immunodeficiency virus (HIV)-infected individuals in response to an in vitro stimulation with the superantigenic erythrogenic toxin A (ETA) of Streptococcus pyogenes. ETA amplifies specifically CD4+ and CD8+ T cells from control donors expressing the V beta 8 and the V beta 12 elements. When peripheral T cells from asymptomatic HIV-infected individuals were stimulated with ETA, there was a complete lack of activation of the V beta 8+ T cell subset, whereas the V beta 12+ T cell subset responded normally to the superantigen. This V beta-specific anergy, which was also observed in response to staphylococcal enterotoxin E (SEE), affected both CD4+ and CD8+ T cells and represented an intrinsic functional defect rather than a specific lack of response to bacterial superantigens since it was also observed after a stimulation with V beta 8 monoclonal antibodies. The V beta 8 anergic T cells did not express interleukin 2 receptors (IL-2Rs) and failed to proliferate in response to exogenous IL-2 or IL-4, suggesting that this anergy was not a reversible process, at least by the use of these cytokines. The unresponsiveness of the V beta 8 T cell subset is frequent since it was found in 56% of the patients studied, and comparison of the clinical status of responder vs. anergic patients indicated that the only known common factor between them was HIV infection. In addition, it is noteworthy that the anergy of the V beta 8 subset may be a very early phenomenon since it was found in a patient at Centers for Disease Control stage I of the disease. These data provide evidence that a dominant superantigen may be involved in the course of HIV infection and that the contribution of HIV has to be considered.


Sign in / Sign up

Export Citation Format

Share Document