scholarly journals Derivation of Field Equations in Space with the Geometric Structure Generated by Metric and Torsion

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Nikolay Yaremenko

This paper is devoted to the derivation of field equations in space with the geometric structure generated by metric and torsion tensors. We also study the geometry of the space generated jointly and agreed on by the metric tensor and the torsion tensor. We showed that in such space the structure of the curvature tensor has special features and for this tensor we obtained analog Ricci-Jacobi identity and evaluated the gap that occurs at the transition from the original to the image and vice versa, in the case of infinitely small contours. We have researched the geodesic lines equation. We introduce the tensor παβ which is similar to the second fundamental tensor of hypersurfaces Yn-1, but the structure of this tensor is substantially different from the case of Riemannian spaces with zero torsion. Then we obtained formulas which characterize the change of vectors in accompanying basis relative to this basis itself. Taking into considerations our results about the structure of such space we derived from the variation principle the general field equations (electromagnetic and gravitational).

The geometry of n Yn space is generated congruently together by the metric tensor and the torsion tensor. In the presented article has been obtained an analog of the Dаrbоuх theory in the n Yn space, also studied the deduction of the equation of the geodesic lines on the hypersurface that embedded in such spaces, showed that in the n Yn space the structure of the curvature tensor has special features and for curvature tensor obtained Ricci - Jacobi identity. We establish that the equations of the geodesics have additional summands, which are caused by the presence of torsion in the space. In n Yn space, the variation of the length of the geodesic lines is proportional to the product of metric and torsion tensors gijSjpk. We have introduced the second fundamental tensor παβ for the hypersurface n Yn-1 and established its structure, which is fundamentally different from the case of the Riemannian spaces with zero torsion. Furthermore, the results on the structure of the curvature tensor have been obtained.


2016 ◽  
Vol 12 (2) ◽  
pp. 4291-4306 ◽  
Author(s):  
Nikolay Ivanovich Yaremenko

In this paper we study the geometry of  space and applications of this space to general theory of relativity. In  space we obtained analog Ricci - Jacobi identity;  the geodesic lines equation have been researched; we introduced analog of Darboux theory in case of  space, so it was shown the  tensor  can be presented as the sum of two tensors symmetrical and antisymmetrical with property  We discussed some partial cases gravitational and electromagnetic interaction, and their connection to geometry structure; we considered stronger electromagnetic field in  space. We derived the general field equations (electromagnetic and gravitational) from the variation principle.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Claudio Cremaschini ◽  
Jiří Kovář ◽  
Zdeněk Stuchlík ◽  
Massimo Tessarotto

AbstractIn this letter a new Lagrangian variational principle is proved to hold for the Einstein field equations, in which the independent variational tensor field is identified with the Ricci curvature tensor $$R^{\mu \nu }$$ R μ ν rather than the metric tensor $$g_{\mu \nu }$$ g μ ν . The corresponding Lagrangian function, denoted as $$L_{R}$$ L R , is realized by a polynomial expression of the Ricci 4-scalar $$R\equiv g_{\mu \nu }R^{\mu \nu }$$ R ≡ g μ ν R μ ν and of the quadratic curvature 4-scalar $$\rho \equiv R^{\mu \nu }R_{\mu \nu }$$ ρ ≡ R μ ν R μ ν . The Lagrangian variational principle applies both to vacuum and non-vacuum cases and for its validity it demands a non-vanishing, and actually also positive, cosmological constant $$\Lambda >0$$ Λ > 0 . Then, by implementing the deDonder–Weyl formalism, the physical conditions for the existence of a manifestly-covariant Hamiltonian structure associated with such a Lagrangian formulation are investigated. As a consequence, it is proved that the Ricci tensor can obey a Hamiltonian dynamics which is consistent with the solutions predicted by the Einstein field equations.


Author(s):  
John Moffat

ABSTRACTThe recent attempt at a physical interpretation of non-Riemannian spaces by Einstein (1, 2) has stimulated a study of these spaces (3–8). The usual definition of a non-Riemannian space is one of n dimensions with which is associated an asymmetric fundamental tensor, an asymmetric linear affine connexion and a generalized curvature tensor. We can also consider an n-dimensional space with which is associated a complex symmetric fundamental tensor, a complex symmetric affine connexion and a generalized curvature tensor based on these. Some aspects of this space can be compared with those of a Riemann space endowed with two metrics (9). In the following the fundamental properties of this non-Riemannian manifold will be developed, so that the relation between the geometry and physical theory may be studied.


Author(s):  
D. W. Sciama

ABSTRACTIt is suggested, on heuristic grounds, that the energy-momentum tensor of a material field with non-zero spin and non-zero rest-mass should be non-symmetric. The usual relationship between energy-momentum tensor and gravitational potential then implies that the latter should also be a non-symmetric tensor. This suggestion has nothing to do with unified field theory; it is concerned with the pure gravitational field.A theory of gravitation based on a non-symmetric potential is developed. Field equations are derived, and a study is made of Rosenfeld identities, Bianchi identities, angular momentum and the equations of motion of test particles. These latter equations represent the geodesics of a Riemannian space whose contravariant metric tensor is gij–, in agreement with a result of Lichnerowicz(9) on the bicharacteristics of the Einstein–Schrödinger field equations.


2008 ◽  
Vol 50 (2) ◽  
pp. 143-176 ◽  
Author(s):  
GEORGE SZEKERES ◽  
LINDSAY PETERS

AbstractThe structure of space–time is examined by extending the standard Lorentz connection group to its complex covering group, operating on a 16-dimensional “spinor” frame. A Hamiltonian variation principle is used to derive the field equations for the spinor connection. The result is a complete set of field equations which allow the sources of the gravitational and electromagnetic fields, and the intrinsic spin of a particle, to appear as a manifestation of the space–time structure. A cosmological solution and a simple particle solution are examined. Further extensions to the connection group are proposed.


2021 ◽  
Vol 2 (2) ◽  
pp. 30-37
Author(s):  
Alaa A. Abdallah ◽  
A. A. Navlekar ◽  
Kirtiwant P. Ghadle

In this paper, we study the relationship between Cartan's second curvature tensor $P_{jkh}^{i}$ and $(h) hv-$torsion tensor $C_{jk}^{i}$ in sense of Berwald. Moreover, we discuss the necessary and sufficient condition for some tensors which satisfy a recurrence property in $BC$-$RF_{n}$, $P2$-Like-$BC$-$RF_{n}$, $P^{\ast }$-$BC$-$RF_{n}$ and $P$-reducible-$BC-RF_{n}$.


2006 ◽  
Vol 21 (11) ◽  
pp. 899-905 ◽  
Author(s):  
N. KIRIUSHCHEVA ◽  
S. V. KUZMIN

It is shown that if general covariance is to be preserved (i.e. a coordinate system is not fixed) the well-known triviality of the Einstein field equations in two dimensions is not a sufficient condition for the Einstein–Hilbert action to be a total divergence. Consequently, a Hamiltonian formulation is possible without any modification of the two-dimensional Einstein–Hilbert action. We find the resulting constraints and the corresponding gauge transformations of the metric tensor.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Bruno J. Barros ◽  
Bogdan Dǎnilǎ ◽  
Tiberiu Harko ◽  
Francisco S. N. Lobo

Abstract We investigate static and spherically symmetric solutions in a gravity theory that extends the standard Hilbert–Einstein action with a Lagrangian constructed from a three-form field $$A_{\alpha \beta \gamma }$$Aαβγ, which is related to the field strength and a potential term. The field equations are obtained explicitly for a static and spherically symmetric geometry in vacuum. For a vanishing three-form field potential the gravitational field equations can be solved exactly. For arbitrary potentials numerical approaches are adopted in studying the behavior of the metric functions and of the three-form field. To this effect, the field equations are reformulated in a dimensionless form and are solved numerically by introducing a suitable independent radial coordinate. We detect the formation of a black hole from the presence of a Killing horizon for the timelike Killing vector in the metric tensor components. Several models, corresponding to different functional forms of the three-field potential, namely, the Higgs and exponential type, are considered. In particular, naked singularity solutions are also obtained for the exponential potential case. Finally, the thermodynamic properties of these black hole solutions, such as the horizon temperature, specific heat, entropy and evaporation time due to the Hawking luminosity, are studied in detail.


Sign in / Sign up

Export Citation Format

Share Document