scholarly journals Morphometric Analysis of Lateral Masses of Axis Vertebrae in North Indians

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Monika Lalit ◽  
Sanjay Piplani ◽  
J. S. Kullar ◽  
Anupama Mahajan

Background and Objective. The lateral masses of axis have good cancellous bone quality beneath the articular surface of facets that make this area a good site for the insertion of an internal fixation device. Methods. 60 dry axis vertebrae were obtained for anatomic evaluation focused on pedicle, superior and inferior articular facets, and foramen transversarium. Based upon linear and angular parameters the mean, range, and standard deviation were calculated. Results. The mean length, width, and height of the pedicle were 21.61 ± 2.37 mm, 8.82 ± 2.43 mm, and 5.63 ± 2.06 mm. The mean pedicle superior angle and median angle were 23.3 and 32.2 degrees. The mean superior articular facet length, width, and external and internal height were 16.34 ± 1.56 mm, 14.35 ± 1.75 mm, 8.98 ± 1.36 mm, and 4.23 ± 0.81 mm. Depth of vertebral artery was 4.72 ± 0.83 mm. Mean inferior articular facet length and width were 11.13 ± 1.43 mm and 7.89 ± 1.30 mm. The mean foramen transversarium length and width were 5.11 ± 0.91 mm and 5.06 ± 1.23 mm. Conclusions. The study may provide information for the surgeons to determine the safe site of entry and trajectory for the screw implantation and also to avoid injuries to vital structures while operating around axis.

1969 ◽  
Vol 14 (9) ◽  
pp. 470-471
Author(s):  
M. DAVID MERRILL
Keyword(s):  

1972 ◽  
Vol 28 (03) ◽  
pp. 447-456 ◽  
Author(s):  
E. A Murphy ◽  
M. E Francis ◽  
J. F Mustard

SummaryThe characteristics of experimental error in measurement of platelet radioactivity have been explored by blind replicate determinations on specimens taken on several days on each of three Walker hounds.Analysis suggests that it is not unreasonable to suppose that error for each sample is normally distributed ; and while there is evidence that the variance is heterogeneous, no systematic relationship has been discovered between the mean and the standard deviation of the determinations on individual samples. Thus, since it would be impracticable for investigators to do replicate determinations as a routine, no improvement over simple unweighted least squares estimation on untransformed data suggests itself.


2020 ◽  
Vol 1 (2) ◽  
pp. 56-66
Author(s):  
Irma Linda

Background: Early marriages are at high risk of marital failure, poor family quality, young pregnancies at risk of maternal death, and the risk of being mentally ill to foster marriage and be responsible parents. Objective: To determine the effect of reproductive health education on peer groups (peers) on the knowledge and perceptions of adolescents about marriage age maturity. Method: This research uses the Quasi experimental method with One group pre and post test design, conducted from May to September 2018. The statistical analysis used in this study is a paired T test with a confidence level of 95% (α = 0, 05). Results: There is an average difference in the mean value of adolescent knowledge between the first and second measurements is 0.50 with a standard deviation of 1.922. The mean difference in mean scores of adolescent perceptions between the first and second measurements was 4.42 with a standard deviation of 9.611. Conclusion: There is a significant difference between adolescent knowledge on the pretest and posttest measurements with a value of P = 0.002, and there is a significant difference between adolescent perceptions on the pretest and posttest measurements with a value of p = 0.001. Increasing the number of facilities and facilities related to reproductive health education by peer groups (peers) in adolescents is carried out on an ongoing basis at school, in collaboration with local health workers as prevention of risky pregnancy.


1988 ◽  
Vol 60 (1) ◽  
pp. 1-29 ◽  
Author(s):  
E. D. Young ◽  
J. M. Robert ◽  
W. P. Shofner

1. The responses of neurons in the ventral cochlear nucleus (VCN) of decerebrate cats are described with regard to their regularity of discharge and latency. Regularity is measured by estimating the mean and standard deviation of interspike intervals as a function of time during responses to short tone bursts (25 ms). This method extends the usual interspike-interval analysis based on interval histograms by allowing the study of temporal changes in regularity during transient responses. The coefficient of variation (CV), equal to the ratio of standard deviation to mean interspike interval, is used as a measure of irregularity. Latency is measured as the mean and standard deviation of the latency of the first spike in response to short tone bursts, with 1.6-ms rise times. 2. The regularity and latency properties of the usual PST histogram response types are shown. Five major PST response type classes are used: chopper, primary-like, onset, onset-C, and unusual. The presence of a prepotential in a unit's action potentials is also noted; a prepotential implies that the unit is recorded from a bushy cell. 3. Units with chopper PST histograms give the most regular discharge. Three varieties of choppers are found. Chop-S units (regular choppers) have CVs less than 0.35 that are approximately constant during the response; chop-S units show no adaptation of instantaneous rate, as measured by the inverse of the mean interspike interval. Chop-T units have CVs greater than 0.35, show an increase in irregularity during the response and show substantial rate adaptation. Chop-U units have CVs greater than 0.35, show a decrease in irregularity during the response, and show a variety of rate adaptation behaviors, including negative adaptation (an increase in rate during a short-tone response). Irregular choppers (chop-T and chop-U units) rarely have CVs greater than 0.5. Choppers have the longest latencies of VCN units; all three groups have mean latencies at least 1 ms longer than the shortest auditory nerve (AN) fiber mean latencies. 4. Chopper units are recorded from stellate cells in VCN (35, 42). Our results for chopper units suggest a model for stellate cells in which a regularly firing action potential generator is driven by the summation of the AN inputs to the cell, where the summation is low-pass filtered by the membrane capacitance of the cell.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Vol 6 (1) ◽  
pp. 247301142097570
Author(s):  
Mossub Qatu ◽  
George Borrelli ◽  
Christopher Traynor ◽  
Joseph Weistroffer ◽  
James Jastifer

Background: The intermetatarsal joint between the fourth and fifth metatarsals (4-5 IM) is important in defining fifth metatarsal fractures. The purpose of the current study was to quantify this joint in order to determine the mean cartilage area, the percentage of the articulation that is cartilage, and to give the clinician data to help understand the joint anatomy as it relates to fifth metatarsal fracture classification. Methods: Twenty cadaver 4-5 IM joints were dissected. Digital images were taken and the articular cartilage was quantified by calibrated digital imaging software. Results: For the lateral fourth proximal intermetatarsal articulation, the mean area of articulation was 188 ± 49 mm2, with 49% of the area composed of articular cartilage. The shape of the articular cartilage had 3 variations: triangular, oval, and square. A triangular variant was the most common (80%, 16 of 20 specimens). For the medial fifth proximal intermetatarsal articulation, the mean area of articulation was 143 ± 30 mm2, with 48% of the joint surface being composed of articular cartilage. The shape of the articular surface was oval or triangular. An oval variant was the most common (75%, 15 of 20 specimens). Conclusion: This study supports the notion that the 4-5 IM joint is not completely articular and has both fibrous and cartilaginous components. Clinical Relevance: The clinical significance of this study is that it quantifies the articular surface area and shape. This information may be useful in understanding fifth metatarsal fracture extension into the articular surface and to inform implant design and also help guide surgeons intraoperatively in order to minimize articular damage.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2421
Author(s):  
Roberta Fusco ◽  
Vincenza Granata ◽  
Mauro Mattace Raso ◽  
Paolo Vallone ◽  
Alessandro Pasquale De Rosa ◽  
...  

Purpose. To combine blood oxygenation level dependent magnetic resonance imaging (BOLD-MRI), dynamic contrast enhanced MRI (DCE-MRI), and diffusion weighted MRI (DW-MRI) in differentiation of benign and malignant breast lesions. Methods. Thirty-seven breast lesions (11 benign and 21 malignant lesions) pathologically proven were included in this retrospective preliminary study. Pharmaco-kinetic parameters including Ktrans, kep, ve, and vp were extracted by DCE-MRI; BOLD parameters were estimated by basal signal S0 and the relaxation rate R2*; and diffusion and perfusion parameters were derived by DW-MRI (pseudo-diffusion coefficient (Dp), perfusion fraction (fp), and tissue diffusivity (Dt)). The correlation coefficient, Wilcoxon-Mann-Whitney U-test, and receiver operating characteristic (ROC) analysis were calculated and area under the ROC curve (AUC) was obtained. Moreover, pattern recognition approaches (linear discrimination analysis and decision tree) with balancing technique and leave one out cross validation approach were considered. Results. R2* and D had a significant negative correlation (−0.57). The mean value, standard deviation, Skewness and Kurtosis values of R2* did not show a statistical significance between benign and malignant lesions (p > 0.05) confirmed by the ‘poor’ diagnostic value of ROC analysis. For DW-MRI derived parameters, the univariate analysis, standard deviation of D, Skewness and Kurtosis values of D* had a significant result to discriminate benign and malignant lesions and the best result at the univariate analysis in the discrimination of benign and malignant lesions was obtained by the Skewness of D* with an AUC of 82.9% (p-value = 0.02). Significant results for the mean value of Ktrans, mean value, standard deviation value and Skewness of kep, mean value, Skewness and Kurtosis of ve were obtained and the best AUC among DCE-MRI extracted parameters was reached by the mean value of kep and was equal to 80.0%. The best diagnostic performance in the discrimination of benign and malignant lesions was obtained at the multivariate analysis considering the DCE-MRI parameters alone with an AUC = 0.91 when the balancing technique was considered. Conclusions. Our results suggest that the combined use of DCE-MRI, DW-MRI and/or BOLD-MRI does not provide a dramatic improvement compared to the use of DCE-MRI features alone, in the classification of breast lesions. However, an interesting result was the negative correlation between R2* and D.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


Author(s):  
Athanasios N. Papadimopoulos ◽  
Stamatios A. Amanatiadis ◽  
Nikolaos V. Kantartzis ◽  
Theodoros T. Zygiridis ◽  
Theodoros D. Tsiboukis

Purpose Important statistical variations are likely to appear in the propagation of surface plasmon polariton waves atop the surface of graphene sheets, degrading the expected performance of real-life THz applications. This paper aims to introduce an efficient numerical algorithm that is able to accurately and rapidly predict the influence of material-based uncertainties for diverse graphene configurations. Design/methodology/approach Initially, the surface conductivity of graphene is described at the far infrared spectrum and the uncertainties of its main parameters, namely, the chemical potential and the relaxation time, on the propagation properties of the surface waves are investigated, unveiling a considerable impact. Furthermore, the demanding two-dimensional material is numerically modeled as a surface boundary through a frequency-dependent finite-difference time-domain scheme, while a robust stochastic realization is accordingly developed. Findings The mean value and standard deviation of the propagating surface waves are extracted through a single-pass simulation in contrast to the laborious Monte Carlo technique, proving the accomplished high efficiency. Moreover, numerical results, including graphene’s surface current density and electric field distribution, indicate the notable precision, stability and convergence of the new graphene-based stochastic time-domain method in terms of the mean value and the order of magnitude of the standard deviation. Originality/value The combined uncertainties of the main parameters in graphene layers are modeled through a high-performance stochastic numerical algorithm, based on the finite-difference time-domain method. The significant accuracy of the numerical results, compared to the cumbersome Monte Carlo analysis, renders the featured technique a flexible computational tool that is able to enhance the design of graphene THz devices due to the uncertainty prediction.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
K Wdowiak-Okrojek ◽  
P Wejner-Mik ◽  
Z Bednarkiewicz ◽  
P Lipiec ◽  
J D Kasprzak

Abstract Background Stress echocardiography (SE) plays an important role among methods of noninvasive diagnosis of ischemic disease. Despite the advantages of physical exercise as the most physiologic stressor, it is difficult (bicycle ergometer) or impossible (treadmill) to obtain and maintain the acoustic window during the exercise. Recently, an innovative probe fixation device was introduced and a research plan was developed to assess the feasibility of external probe fixation during exercise echocardiography on a supine bicycle and upright treadmill exercise for the first time. Methods 37 subjects (36 men, mean age 39 ± 16 years, 21 healthy volunteers, 16 patients with suspected coronary artery disease) were included in this study. This preliminary testing stage included mostly men due to more problematic probe fixation in women. All subjects underwent a submaximal exercise stress test on a treadmill (17/37) or bicycle ergometer (11/37). Both sector and matrix probes were used. We assessed semi-quantitatively the quality of acquired apical views at each stage – the four-point grading system was used (0-no view, 1-suboptimal quality, 2-optimal quality, 3-very good quality), 2-3 sufficient for diagnosis. Results The mean time required for careful positioning of the probe and image optimization was 12 ± 3 min and shortened from 13,7 to 11,1 minutes (mean) in first vs second half of the cohort documenting learning curve. At baseline, 9 patients had at least one apical view of quality precluding reliable analysis. Those patients were excluded from further assessment. During stress, 17 patients maintained the optimal or very good quality of all apical views, whereas in 11 patients the quality significantly decreased during the stress test and required probe repositioning. The mean image quality score at baseline was 2,61 ± 0,48 and 2,25 ± 0,6 after exercise. Expectedly, good image quality was easier to obtain and maintain in the supine position (score 2,74 ± 0,44) points as compared with upright position (score 2,25 ± 0,57). Conclusion This preliminary, unique experience with external probe fixation device indicates that continuous acquisition and monitoring of echocardiographic images is feasible during physical exercise, and for the first time ever - also on the treadmill. This feasibility data stem from almost exclusively male patients and the estimated rate of sufficient image quality throughout the entire test is currently around 60%. We are hoping, that gaining more experience with the product could increase the success rate on exercise tests. Abstract P1398 Figure. Treadmill and ergometer stress test


Sign in / Sign up

Export Citation Format

Share Document