scholarly journals Blood Oxygenation Level Dependent Magnetic Resonance Imaging (MRI), Dynamic Contrast Enhanced MRI and Diffusion Weighted MRI for Benign and Malignant Breast Cancer Discrimination: A Preliminary Experience

Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2421
Author(s):  
Roberta Fusco ◽  
Vincenza Granata ◽  
Mauro Mattace Raso ◽  
Paolo Vallone ◽  
Alessandro Pasquale De Rosa ◽  
...  

Purpose. To combine blood oxygenation level dependent magnetic resonance imaging (BOLD-MRI), dynamic contrast enhanced MRI (DCE-MRI), and diffusion weighted MRI (DW-MRI) in differentiation of benign and malignant breast lesions. Methods. Thirty-seven breast lesions (11 benign and 21 malignant lesions) pathologically proven were included in this retrospective preliminary study. Pharmaco-kinetic parameters including Ktrans, kep, ve, and vp were extracted by DCE-MRI; BOLD parameters were estimated by basal signal S0 and the relaxation rate R2*; and diffusion and perfusion parameters were derived by DW-MRI (pseudo-diffusion coefficient (Dp), perfusion fraction (fp), and tissue diffusivity (Dt)). The correlation coefficient, Wilcoxon-Mann-Whitney U-test, and receiver operating characteristic (ROC) analysis were calculated and area under the ROC curve (AUC) was obtained. Moreover, pattern recognition approaches (linear discrimination analysis and decision tree) with balancing technique and leave one out cross validation approach were considered. Results. R2* and D had a significant negative correlation (−0.57). The mean value, standard deviation, Skewness and Kurtosis values of R2* did not show a statistical significance between benign and malignant lesions (p > 0.05) confirmed by the ‘poor’ diagnostic value of ROC analysis. For DW-MRI derived parameters, the univariate analysis, standard deviation of D, Skewness and Kurtosis values of D* had a significant result to discriminate benign and malignant lesions and the best result at the univariate analysis in the discrimination of benign and malignant lesions was obtained by the Skewness of D* with an AUC of 82.9% (p-value = 0.02). Significant results for the mean value of Ktrans, mean value, standard deviation value and Skewness of kep, mean value, Skewness and Kurtosis of ve were obtained and the best AUC among DCE-MRI extracted parameters was reached by the mean value of kep and was equal to 80.0%. The best diagnostic performance in the discrimination of benign and malignant lesions was obtained at the multivariate analysis considering the DCE-MRI parameters alone with an AUC = 0.91 when the balancing technique was considered. Conclusions. Our results suggest that the combined use of DCE-MRI, DW-MRI and/or BOLD-MRI does not provide a dramatic improvement compared to the use of DCE-MRI features alone, in the classification of breast lesions. However, an interesting result was the negative correlation between R2* and D.

BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Alexey Surov ◽  
Hans Jonas Meyer ◽  
Andreas Wienke

Abstract Background The purpose of the present meta-analysis was to provide evident data about use of Apparent Diffusion Coefficient (ADC) values for distinguishing malignant and benign breast lesions. Methods MEDLINE library and SCOPUS database were screened for associations between ADC and malignancy/benignancy of breast lesions up to December 2018. Overall, 123 items were identified. The following data were extracted from the literature: authors, year of publication, study design, number of patients/lesions, lesion type, mean value and standard deviation of ADC, measure method, b values, and Tesla strength. The methodological quality of the 123 studies was checked according to the QUADAS-2 instrument. The meta-analysis was undertaken by using RevMan 5.3 software. DerSimonian and Laird random-effects models with inverse-variance weights were used without any further correction to account for the heterogeneity between the studies. Mean ADC values including 95% confidence intervals were calculated separately for benign and malign lesions. Results The acquired 123 studies comprised 13,847 breast lesions. Malignant lesions were diagnosed in 10,622 cases (76.7%) and benign lesions in 3225 cases (23.3%). The mean ADC value of the malignant lesions was 1.03 × 10− 3 mm2/s and the mean value of the benign lesions was 1.5 × 10− 3 mm2/s. The calculated ADC values of benign lesions were over the value of 1.00 × 10− 3 mm2/s. This result was independent on Tesla strength, choice of b values, and measure methods (whole lesion measure vs estimation of ADC in a single area). Conclusion An ADC threshold of 1.00 × 10− 3 mm2/s can be recommended for distinguishing breast cancers from benign lesions.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2420
Author(s):  
Vincenza Granata ◽  
Roberta Fusco ◽  
Chiara Risi ◽  
Alessandro Ottaiano ◽  
Antonio Avallone ◽  
...  

Objectives: To detect RAS mutation in colorectal liver metastasis by Diffusion-Weighted Magnetic Resonance Imaging (DWI-MRI) - and Diffusion Kurtosis imaging (DKI)-derived parameters. Methods: In total, 106 liver metastasis (60 metastases with RAS mutation) in 52 patients were included in this retrospective study. Diffusion and perfusion parameters were derived by DWI (apparent diffusion coefficient (ADC), basal signal (S0), pseudo-diffusion coefficient (DP), perfusion fraction (FP) and tissue diffusivity (DT)) and DKI data (mean of diffusion coefficient (MD) and mean of diffusional Kurtosis (MK)). Wilcoxon–Mann–Whitney U tests for non-parametric variables and receiver operating characteristic (ROC) analyses were calculated with area under ROC curve (AUC). Moreover, pattern recognition approaches (linear classifier, support vector machine, k-nearest neighbours, decision tree), with features selection methods and a leave-one-out cross validation approach, were considered. Results: A significant discrimination between the group with RAS mutation and the group without RAS mutation was obtained by the standard deviation value of MK (MK STD), by the mean value of MD, and by that of FP. The best results were reached by MK STD with an AUC of 0.80 (sensitivity of 72%, specificity of 85%, accuracy of 79%) using a cut-off of 203.90 × 10−3, and by the mean value of MD with AUC of 0.80 (sensitivity of 84%, specificity of 73%, accuracy of 77%) using a cut-off of 1694.30 mm2/s × 10−6. Considering all extracted features or the predictors obtained by the features selection method (the mean value of S0, the standard deviation value of MK, FP and of DT), the tested pattern recognition approaches did not determine an increase in diagnostic accuracy to detect RAS mutation (AUC of 0.73 and 0.69, respectively). Conclusions: Diffusion-Weighted imaging and Diffusion Kurtosis imaging could be used to detect the RAS mutation in liver metastasis. The standard deviation value of MK and the mean value of MD were the more accurate parameters in the RAS mutation detection, with an AUC of 0.80.


Author(s):  
Athanasios N. Papadimopoulos ◽  
Stamatios A. Amanatiadis ◽  
Nikolaos V. Kantartzis ◽  
Theodoros T. Zygiridis ◽  
Theodoros D. Tsiboukis

Purpose Important statistical variations are likely to appear in the propagation of surface plasmon polariton waves atop the surface of graphene sheets, degrading the expected performance of real-life THz applications. This paper aims to introduce an efficient numerical algorithm that is able to accurately and rapidly predict the influence of material-based uncertainties for diverse graphene configurations. Design/methodology/approach Initially, the surface conductivity of graphene is described at the far infrared spectrum and the uncertainties of its main parameters, namely, the chemical potential and the relaxation time, on the propagation properties of the surface waves are investigated, unveiling a considerable impact. Furthermore, the demanding two-dimensional material is numerically modeled as a surface boundary through a frequency-dependent finite-difference time-domain scheme, while a robust stochastic realization is accordingly developed. Findings The mean value and standard deviation of the propagating surface waves are extracted through a single-pass simulation in contrast to the laborious Monte Carlo technique, proving the accomplished high efficiency. Moreover, numerical results, including graphene’s surface current density and electric field distribution, indicate the notable precision, stability and convergence of the new graphene-based stochastic time-domain method in terms of the mean value and the order of magnitude of the standard deviation. Originality/value The combined uncertainties of the main parameters in graphene layers are modeled through a high-performance stochastic numerical algorithm, based on the finite-difference time-domain method. The significant accuracy of the numerical results, compared to the cumbersome Monte Carlo analysis, renders the featured technique a flexible computational tool that is able to enhance the design of graphene THz devices due to the uncertainty prediction.


2014 ◽  
Vol 496-500 ◽  
pp. 1643-1647
Author(s):  
Ying Feng Wu ◽  
Gang Yan Li

IR-based large scale volume localization system (LSVLS) can localize the mobile robot working in large volume, which is constituted referring to the MSCMS-II. Hundreds cameras in LSVLS must be connected to the control station (PC) through network. Synchronization of cameras which are mounted on different control stations is significant, because the image acquisition of the target must be synchronous to ensure that the target is localized precisely. Software synchronization method is adopted to ensure the synchronization of camera. The mean value of standard deviation of eight cameras mounted on two workstations is 12.53ms, the localization performance of LSVLS is enhanced.


2011 ◽  
Vol 1 (4) ◽  
pp. 305-312 ◽  
Author(s):  
Y. Wang

Precise computation of the direct and indirect topographic effects of Helmert's 2nd method of condensation using SRTM30 digital elevation modelThe direct topographic effect (DTE) and indirect topographic effect (ITE) of Helmert's 2nd method of condensation are computed using the digital elevation model (DEM) SRTM30 in 30 arc-seconds globally. The computations assume a constant density of the topographic masses. Closed formulas are used in the inner zone of half degree, and Nagy's formulas are used in the innermost column to treat the singularity of integrals. To speed up the computations, 1-dimensional fast Fourier transform (1D FFT) is applied in outer zone computations. The computation accuracy is limited to 0.1 mGal and 0.1cm for the direct and indirect effect, respectively.The mean value and standard deviation of the DTE are -0.8 and ±7.6 mGal over land areas. The extreme value -274.3 mGal is located at latitude -13.579° and longitude 289.496°, at the height of 1426 meter in the Andes Mountains. The ITE is negative everywhere and has its minimum of -235.9 cm at the peak of Himalayas (8685 meter). The standard deviation and mean value over land areas are ±15.6 cm and -6.4 cm, respectively. Because the Stokes kernel does not contain the zero and first degree spherical harmonics, the mean value of the ITE can't be compensated through the remove-restore procedure under the Stokes-Helmert scheme, and careful treatment of the mean value in the ITE is required.


2017 ◽  
Vol 11 (1) ◽  
pp. 49-58
Author(s):  
Carmen D'Anna ◽  
Maurizio Schmid ◽  
Andrea Scorza ◽  
Salvatore A. Sciuto ◽  
Luisa Lopez ◽  
...  

Background: The development of postural control across the primary school time horizon is a complex process, which entails biomechanics modifications, the maturation of cognitive ability and sensorimotor organization, and the emergence of anticipatory behaviour. Postural stability in upright stance has been thus object of a multiplicity of studies to better characterize postural control in this age span, with a variety of methodological approaches. The analysis of the Time-to-Boundary function (TtB), which specifies the spatiotemporal proximity of the Centre of Pressure (CoP) to the stability boundaries in the regulation of posture in upright stance, is among the techniques used to better characterize postural stability in adults, but, as of now, it has not yet been introduced in developmental studies. The aim of this study was thus to apply this technique to evaluate the development of postural control in a sample population of primary school children. Methods: In this cross-sectional study, upright stance trials under eyes open and eyes closed were administered to 107 healthy children, divided into three age groups (41 for Seven Years' Group, Y7; 38 for Nine Years' Group, Y9; 28 for Eleven Years' Group, Y11). CoP data were recorded to calculate the Time-to-Boundary function (TtB), from which four spatio-temporal parameters were extracted: the mean value and the standard deviation of TtB minima (Mmin, Stdmin), and the mean value and the standard deviation of the temporal distance between two successive minima (Mdist, Stddist). Results: With eyes closed, Mmin and Stdmin significantly decreased and Mdist and Stddist increased for the Y7 group, at Y9 Mmin significantly decreased and Stddist increased, while no effect of vision resulted for Y11. Regarding age groups, Mmin was significantly higher for Y9 than Y7, and Stdmin for Y9 was higher than both Y7 and Y11; Mdist and Stddist resulted higher for Y11 than for Y9. Conclusion: From the combined results from the spatio-temporal TtB parameters, it is suggested that, at 9 years, children look more efficient in terms of exploring their limits of stability than at 7, and at 11 the observed TtB behaviour hints at the possibility that, at that age, they have almost completed the maturation of postural control in upright stance, also in terms of integration of the spatio-temporal information.


Author(s):  
Lena Golubovskaja

This chapter analyzes the tone and information content of the two external policy reports of the Internal Monetary Fund (IMF), the IMF Article IV Staff Reports, and Executive Board Assessments for Euro area countries. In particular, the researchers create a tone measure denoted WARNING based on the existing DICTION 5.0 Hardship dictionary. This study finds that in the run-up to the current credit crises, average WARNING tone levels of Staff Reports for Slovenia, Luxembourg, Greece, and Malta are one standard deviation above the EMU sample mean; and for Spain and Belgium, they are one standard deviation below the mean value. Furthermore, on average for Staff Reports over the period 2005-2007, there are insignificant differences between the EMU sample mean and Staff Reports’ yearly averages. Researchers find the presence of a significantly increased level of WARNING tone in 2006 (compared to the previous year) for the IMF Article IV Staff Reports. There is also a systematic bias of WARNING scores for Executive Board Assessments versus WARNING scores for the Staff Reports.


1988 ◽  
Vol 34 (11) ◽  
pp. 2256-2259 ◽  
Author(s):  
M H Kroll ◽  
M Ruddel ◽  
R J Elin

Abstract The location of the Reference Value for an analyte within the population distribution affects the magnitude of error due to methodological bias. Using the gaussian distribution, we evaluated the effects of systematic and proportional biases of the method (positive and negative), mean value, and standard deviation on the magnitude of error. We chose four Reference Values for cholesterol as a model. For a population with a mean of 2.0 and SD of 0.36 g of cholesterol per liter, a 3% positive proportional bias causes sixfold more error at the 50th percentile than at the 97.5th. In general, the error for a given bias (proportional or systematic) is greater for a Reference Value within the body than at the tails of the distribution. Further, the magnitude of the error varies as a function of the mean and standard deviation of the population.


2010 ◽  
Vol 14 (07) ◽  
pp. 592-604 ◽  
Author(s):  
Do Sung Huh ◽  
Sang Joon Choe

The recent interest in the application of density functional theory (DFT) has prompted us to test several functions in molecular geometries of methyl pheophorbides-a (MPa), an important starting material in photodynamic therapy (PDT). In this study, we report on tests for three popular DFT methods: M06-2X, B3LYP, and LSDA. Based on the standard deviation and the mean value, and by using the difference between optimized calculated value and experimental value in geometries, we drew the following conclusions: M06-2X/6-311+G(d,p) attained the smallest standard deviation of difference among the tested DFT methods in terms of bond length, whereas the standard deviation of bond angle in LSDA/6-311+G(d,p) was the smallest. In terms of absolute value, the mean value of LSDA/6-311+G(d,p) calculation was larger than that of M06-2X/6-311+G(d,p). We found that M06-2X/6-311+G(d,p) gave the best performance for MPa in the molecular geometries. The UV-visible spectrum was calculated with time-dependent density-functional theory (TD-DFT). Time-dependent M06-2X/6-311+G(d,p) gave the best performance for MPa in CH2Cl2 solution. In general, TD-DFT calculations in CH2Cl2 solution were more red-shifted compared with those in the solid state.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5109
Author(s):  
Emanuele Rizzuto ◽  
Barbara Peruzzi ◽  
Mariagrazia Giudice ◽  
Enrica Urciuoli ◽  
Erika Pittella ◽  
...  

In this paper, the characterization of the main techniques and transducers employed to measure local and global strains induced by uniaxial loading of murine tibiae is presented. Micro strain gauges and digital image correlation (DIC) were tested to measure local strains, while a moving coil motor-based length transducer was employed to measure relative global shortening. Local strain is the crucial parameter to be measured when dealing with bone cell mechanotransduction, so we characterized these techniques in the experimental conditions known to activate cell mechanosensing in vivo. The experimental tests were performed using tibia samples excised from twenty-two C57BL/6 mice. To evaluate measurement repeatability we computed the standard deviation of ten repetitive compressions to the mean value. This value was lower than 3% for micro strain gauges, and in the range of 7%–10% for DIC and the length transducer. The coefficient of variation, i.e., the standard deviation to the mean value, was about 35% for strain gauges and the length transducer, and about 40% for DIC. These results provided a comprehensive characterization of three methodologies for local and global bone strain measurement, suggesting a possible field of application on the basis of their advantages and limitations.


Sign in / Sign up

Export Citation Format

Share Document