scholarly journals Grafting of Gold Nanoparticles on Glass Using Sputtered Gold Interlayers

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ondřej Kvítek ◽  
Robin Hendrych ◽  
Zdeňka Kolská ◽  
Václav Švorčík

Three-step preparation of nanostructured Au layer on glass substrate is described. The procedure starts with sputtered gold interlayer, followed by grafting with dithiols and final coverage with gold nanoparticles (AuNPs). Successful binding of dithiols on the sputtered Au film was confirmed by X-ray photoelectron spectroscopy measurement. AuNPs bound to the surface were observed using atomic force microscopy. Both single nanoparticles and their aggregates were observed. UV-Vis spectra show broadening of surface plasmon resonance peak after AuNPs binding caused by aggregation of AuNPs on the sample surface. Zeta potential measurements suggest that a large part of the dithiol molecules are preferentially bound to the gold interlayer via both –SH groups.

Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 612 ◽  
Author(s):  
Nancy Tepale ◽  
Víctor V. A. Fernández-Escamilla ◽  
Clara Carreon-Alvarez ◽  
Valeria J. González-Coronel ◽  
Adan Luna-Flores ◽  
...  

The fundamental aspects of the manufacturing of gold nanoparticles (AuNPs) are discussed in this review. In particular, attention is devoted to the development of a simple and versatile method for the preparation of these nanoparticles. Eco-friendly synthetic routes, such as wet chemistry and biosynthesis with the aid of polymers, are of particular interest. Polymers can act as reducing and/or capping agents, or as soft templates leading to hybrid nanomaterials. This methodology allows control of the synthesis and stability of nanomaterials with novel properties. Thus, this review focus on a fundamental study of AuNPs properties and different techniques to characterize them, e.g., Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), UV-Visible spectroscopy, Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy, Small-angle X-Ray Scattering (SAXS), and rheology. Recently, AuNPs obtained by “green” synthesis have been applied in catalysis, in medicine, and as antibacterials, sensors, among others.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


Nanomedicine ◽  
2022 ◽  
Author(s):  
Hossein Danafar ◽  
Marziyeh Salehiabar ◽  
Murat Barsbay ◽  
Hossein Rahimi ◽  
Mohammadreza Ghaffarlou ◽  
...  

Aim: To prepare a novel hybrid system for the controlled release and delivery of curcumin (CUR). Methods: A method for the ultrasound-assisted fabrication of protein-modified nanosized graphene oxide-like carbon-based nanoparticles (CBNPs) was developed. After being modified with bovine serum albumin (BSA), CUR was loaded onto the synthesized hybrid (labeled CBNPs@BSA–CUR). The structure and properties of the synthesized nanoparticles were elucidated using transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) methods. Results: CBNPs@BSA–CUR showed pH sensitivity and were calculated as controlled CUR release behavior. The drug-free system exhibited good biocompatibility and was nontoxic. However, CBNPs@BSA–CUR showed acceptable antiproliferative ability against MCF-7 breast cancer cells. Conclusion: CBNPs@BSA–CUR could be considered a highly promising nontoxic nanocarrier for the delivery of CUR with good biosafety.


2021 ◽  
Vol 314 ◽  
pp. 302-306
Author(s):  
Quoc Toan Le ◽  
E. Kesters ◽  
M. Doms ◽  
Efrain Altamirano Sánchez

Different types of ALD Ru films, including as-deposited, annealed Ru, without and with a subsequent CMP step, were used for wet etching study. With respect to the as-deposited Ru, the etching rate of the annealed Ru film in metal-free chemical mixtures (pH = 7-9) was found to decrease substantially. X-ray photoelectron spectroscopy characterization indicated that this behavior could be explained by the presence of the formation of RuOx (x = 2,3) caused by the anneal. A short CMP step applied to the annealed Ru wafer removed the surface RuOx, at least partially, resulting in a significant increase of the etching rate. The change in surface roughness was quantified using atomic force microscopy.


2018 ◽  
Vol 51 (2) ◽  
pp. 246-253
Author(s):  
Dev Raj Chopra ◽  
Justin Seth Pearson ◽  
Darius Durant ◽  
Ritesh Bhakta ◽  
Anil R. Chourasia

2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7292
Author(s):  
Tomasz Rerek ◽  
Beata Derkowska-Zielinska ◽  
Marek Trzcinski ◽  
Robert Szczesny ◽  
Mieczyslaw K. Naparty ◽  
...  

Copper layers with thicknesses of 12, 25, and 35 nm were thermally evaporated on silicon substrates (Si(100)) with two different deposition rates 0.5 and 5.0 Å/s. The microstructure of produced coatings was studied using atomic force microscopy (AFM) and powder X-ray diffractometer (XRD). Ellipsometric measurements were used to determine the effective dielectric functions <ε˜> as well as the quality indicators of the localized surface plasmon (LSP) and the surface plasmon polariton (SPP). The composition and purity of the produced films were analysed using X-ray photoelectron spectroscopy (XPS).


2016 ◽  
Vol 689 ◽  
pp. 55-59
Author(s):  
Serge Zhuiykov

Electrical properties and morphology of orthorhombic β–WO3 nano-flakes with thickness of ~7-9 nm were investigated at the nanoscale using energy dispersive X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNATM). CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nano-flakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β–WO3 nano-flakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro- and nano-structured WO3 synthesized at alternative temperatures.


Sign in / Sign up

Export Citation Format

Share Document