scholarly journals Exact Penalization in Stochastic Programming—Calmness and Constraint Qualification

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Martin Branda

We deal with the conditions which ensure exact penalization in stochastic programming problems under finite discrete distributions. We give several sufficient conditions for problem calmness including graph calmness, existence of an error bound, and generalized Mangasarian-Fromowitz constraint qualification. We propose a new version of the theorem on asymptotic equivalence of local minimizers of chance constrained problems and problems with exact penalty objective. We apply the theory to a problem with a stochastic vanishing constraint.

Author(s):  
D. E. Berezhnov ◽  
L. I. Minchenko

This article is devoted to the Error Bound property (also named R-regularity) in mathematical programming problems. This property plays an important role in analyzing the convergence of numerical optimization algorithms, a topic covered by multiple publications, and at the same time it is a relatively generic constraint qualification that guarantees the satisfaction of the necessary Kuhn – Tucker optimality conditions in mathematical programming problems. In the article, new sufficient conditions for the error bound property are described, and it’s also shown that several known necessary conditions are insufficient. The sufficient conditions obtained can be used to prove the regularity of a large class of sets including sets that cannot be proven regular by other known constraints.


Author(s):  
Patrick Mehlitz ◽  
Leonid I. Minchenko

AbstractThe presence of Lipschitzian properties for solution mappings associated with nonlinear parametric optimization problems is desirable in the context of, e.g., stability analysis or bilevel optimization. An example of such a Lipschitzian property for set-valued mappings, whose graph is the solution set of a system of nonlinear inequalities and equations, is R-regularity. Based on the so-called relaxed constant positive linear dependence constraint qualification, we provide a criterion ensuring the presence of the R-regularity property. In this regard, our analysis generalizes earlier results of that type which exploited the stronger Mangasarian–Fromovitz or constant rank constraint qualification. Afterwards, we apply our findings in order to derive new sufficient conditions which guarantee the presence of R-regularity for solution mappings in parametric optimization. Finally, our results are used to derive an existence criterion for solutions in pessimistic bilevel optimization and a sufficient condition for the presence of the so-called partial calmness property in optimistic bilevel optimization.


2021 ◽  
pp. 1-24
Author(s):  
Hiroaki Kaido ◽  
Francesca Molinari ◽  
Jörg Stoye

The literature on stochastic programming typically restricts attention to problems that fulfill constraint qualifications. The literature on estimation and inference under partial identification frequently restricts the geometry of identified sets with diverse high-level assumptions. These superficially appear to be different approaches to closely related problems. We extensively analyze their relation. Among other things, we show that for partial identification through pure moment inequalities, numerous assumptions from the literature essentially coincide with the Mangasarian–Fromowitz constraint qualification. This clarifies the relation between well-known contributions, including within econometrics, and elucidates stringency, as well as ease of verification, of some high-level assumptions in seminal papers.


Author(s):  
Ion Necoara ◽  
Martin Takáč

Abstract In this paper we consider large-scale smooth optimization problems with multiple linear coupled constraints. Due to the non-separability of the constraints, arbitrary random sketching would not be guaranteed to work. Thus, we first investigate necessary and sufficient conditions for the sketch sampling to have well-defined algorithms. Based on these sampling conditions we develop new sketch descent methods for solving general smooth linearly constrained problems, in particular, random sketch descent (RSD) and accelerated random sketch descent (A-RSD) methods. To our knowledge, this is the first convergence analysis of RSD algorithms for optimization problems with multiple non-separable linear constraints. For the general case, when the objective function is smooth and non-convex, we prove for the non-accelerated variant sublinear rate in expectation for an appropriate optimality measure. In the smooth convex case, we derive for both algorithms, non-accelerated and A-RSD, sublinear convergence rates in the expected values of the objective function. Additionally, if the objective function satisfies a strong convexity type condition, both algorithms converge linearly in expectation. In special cases, where complexity bounds are known for some particular sketching algorithms, such as coordinate descent methods for optimization problems with a single linear coupled constraint, our theory recovers the best known bounds. Finally, we present several numerical examples to illustrate the performances of our new algorithms.


2020 ◽  
Vol 37 (04) ◽  
pp. 2040018
Author(s):  
Rui Shen ◽  
Zhiqing Meng ◽  
Min Jiang

In this paper, a smoothing partial exact penalty function of biconvex programming is studied. First, concepts of partial KKT point, partial optimum point, partial KKT condition, partial Slater constraint qualification and partial exactness are defined for biconvex programming. It is proved that the partial KKT point is equal to the partial optimum point under the condition of partial Slater constraint qualification and the penalty function of biconvex programming is partially exact if partial KKT condition holds. We prove the error bounds properties between smoothing penalty function and penalty function of biconvex programming when the partial KKT condition holds, as well as the error bounds between objective value of a partial optimum point of smoothing penalty function problem and its [Formula: see text]-feasible solution. So, a partial optimum point of the smoothing penalty function optimization problem is an approximately partial optimum point of biconvex programming. Second, based on the smoothing penalty function, two algorithms are presented for finding a partial optimum or approximate [Formula: see text]-feasible solution to an inequality constrained biconvex optimization and their convergence is proved under some conditions. Finally, numerical experiments show that a satisfactory approximate solution can be obtained by the proposed algorithm.


1992 ◽  
Vol 55 (1-3) ◽  
pp. 49-68 ◽  
Author(s):  
Gianni Di Pillo ◽  
Francisco Facchinei ◽  
Luigi Grippo

1998 ◽  
Vol 128 (5) ◽  
pp. 1007-1022 ◽  
Author(s):  
N. Chernyavskaya

The Hartman–Wintner problem on asymptotic equivalence of fundamental systems of solutions (FSSs) for two Sturm–Liouville equations is studied. The following results are obtained: a criterion of asymptotic equivalence of FSSs, and sufficient conditions of asymptotic equivalence of FSSs which are expressed in terms of the coefficients of the considered equations only.


2017 ◽  
Vol 27 (08) ◽  
pp. 1391-1421 ◽  
Author(s):  
Alessandro Della Corte ◽  
Francesco dell’Isola ◽  
Raffaele Esposito ◽  
Mario Pulvirenti

We present some novel equilibrium shapes of a clamped Euler beam (Elastica from now on) under uniformly distributed dead load orthogonal to the straight reference configuration. We characterize the properties of the minimizers of total energy, determine the corresponding Euler–Lagrange conditions and prove, by means of direct methods of calculus of variations, the existence of curled local minimizers. Moreover, we prove some sufficient conditions for stability and instability of solutions of the Euler–Lagrange, that can be applied to numerically found curled shapes.


2006 ◽  
Vol 16 (11) ◽  
pp. 3421-3433 ◽  
Author(s):  
XIAOFENG WU ◽  
MUHONG WANG

The sufficient conditions for chaos synchronization of two nonidentical systems by replacing variables control have not been proposed until now. In this paper, synchronization of two chaotic Lur'e systems with parameter mismatch by replacing variables control is studied. First of all, we present a master-slave Lur'e systems synchronization scheme with both parameter mismatch and replacing variables control, and derive a responsive error system for the scheme. A new definition of synchronization with finite L 2-gain is then introduced. Based on the definition, the sufficient synchronization criteria which are in the form of linear matrix inequality (LMI) are proved using a quadratic Lyapunov function. By means of MKY lemma the frequency domain criteria are further derived from the obtained LMIs. These frequency domain criteria are illustrated on the master-slave Chua's circuits with parameter mismatch so that the ranges of the parameters of Chua's circuit are analytically solved in the sense of the synchronization with finite L 2-gain by replacing singe-variable control. The illustrative examples verify that within the ranges of the parameters it is possible to synchronize the master-slave Chua's circuits up to a small synchronization error bound, even the qualitative behaviors of the slave circuit are different from that of the master one, such as the trajectory of the master circuit is chaotic and that of the slave divergent. The relation between the synchronization error bound and parameter mismatch is shown.


Sign in / Sign up

Export Citation Format

Share Document