scholarly journals Representative Elementary Length to Measure Soil Mass Attenuation Coefficient

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
J. A. R. Borges ◽  
L. F. Pires ◽  
J. C. Costa

With increasing demand for better yield in agricultural areas, soil physical property representative measurements are more and more essential. Nuclear techniques such as computerized tomography (CT) and gamma-ray attenuation (GAT) have been widely employed with this purpose. The soil mass attenuation coefficient (μs) is an important parameter for CT and GAT analysis. When experimentally determined (μes), the use of suitable sized samples enable to evaluate it precisely, as well as to reduce measurement time and costs. This study investigated the representative elementary length (REL) of sandy and clayey soils forμesmeasurements. Two radioactive sources were employed (241Am and137Cs), three collimators (2–4 mm diameters), and 14 thickness (x) samples (2–15 cm). Results indicated ideal thickness intervals of 12–15 and 2–4 cm for the sources137Cs and241Am, respectively. The application of such results in representative elementary area (REA) evaluations in clayey soil clods via CT indicated thatμesaverage values obtained forx > 4 cm and source241Am might induce to the use of samples which are not large enough for soil bulk density evaluations (ρs). As a consequence,ρsmight be under- or overestimated, generating inaccurate conclusions about the physical quality of the soil under study.

2016 ◽  
Vol 675-676 ◽  
pp. 730-733
Author(s):  
Chumphon Khobkham ◽  
W. Chaiphaksa ◽  
P. Limkitjaroenporn ◽  
P. Prongsamrong ◽  
P. Wiwatkanjana ◽  
...  

In this work, the total mass attenuation coefficient and partial interactions of the zirconium alloy have been calculated by WinXCom program at 1 keV-100 MeV gamma ray energies. Zr2(Fe,Ni) alloys was studied for the mass attenuation coefficients, photoelectric absorption, incoherent, coherent and pair production processes. The effective atomic numbers and electron densities were also calculated. The calculated results show that the total mass attenuation coefficient decreased with increasing of gamma rays energy. The value of total mass attenuation coefficient of each material was different, which depend on chemical compositions of alloy. The partials interactions, effective atomic numbers and electron densities were also calculated and discussed.


2021 ◽  
Vol 19 (6) ◽  
pp. 107-114
Author(s):  
Mohammed Yahya Hadi ◽  
Ali Hussein F. Alnasraui ◽  
Ali Adil Turki Aldalawi

The purpose of this paper is to determine the mass attenuation coefficient (μ/ρ), of a sample. In this work used (C16H32O2) fatty acid, exposed to gamma rays (γ), emitted from various sources 57Co, 133Ba, 22Na, 137Cs, 54Mn, and sCo with energies from 0.122 to 1.330 MeV. It exposes the compound to gamma rays and discloses the radiation force that passes through the sample, the rest of the gamma radiation attenuated. A NaI fluorescence detector (Tl) with an accuracy of 8.2% (at 662 kV) was used for the gamma ray detector beam. An advantage of using (μ/ρ) coefficient data can be obtained effective atomic numbers, atomic cross-section and effective electron densities.


2014 ◽  
Vol 64 ◽  
pp. 206-211 ◽  
Author(s):  
J.C. Costa ◽  
J.A.R. Borges ◽  
L.F. Pires ◽  
R.C.J. Arthur ◽  
O.O.S. Bacchi

Author(s):  
A. O. Ogunrotimi ◽  
M. Y. Onimisi ◽  
I. O. Okunade

This study considered the setup of gamma transmission facility to develop a methodology for determining the amount of cement in sandcrete block. Twelve block samples was moulded in varying sand/cement ratio. The 12 samples each were measured both in volume, masses and density. Each of the samples went through a destructive test to determine the compressive strength via strength test machine. Also each of the sample went through a non destructive gamma ray transmission (GRT) test, where gamma count was taken both before and after crushing. The linear & mass attenuation co-efficient U & U (cm2/g) was determined by (1) The incident gamma ray intensity,(2) the attenuation gamma ray intensity and (3) the background intensity. We realized that the cement weight concentration against the mass attenuation co-efficient has a linear corelation of 0.97, while the compressive strength of the same samples against cement concentration also give a linear correlation of 0.96 except for lower cement values of 7.35 and 9.37wt% which deviates from the straight line. Its deduced that there is a remarkable relationship between mass attenuation coefficient, compressive strength and cement concentration, thus mass attenuation coefficient against compressive strength has a linear correlation of 0.985. Conclusively, it was noted that gamma transmission technique is non-destructive, fast and cost effective compared to the conventional method.


2020 ◽  
Vol 1 (9) ◽  
pp. 421-426
Author(s):  
Adnan Küçükönder ◽  
Saniye Tekerek

In this study, total atomic cross-section (σta), total moleculer cross-section (σtm) total electronic cross-section (σte), effective atomic number (Zeff), effective electron density (Neff) and Kerma (K) were determined both experimentally and theoretically values for some iodine compounds. Experimental mass attenuation coefficient (µ/ρ) values for some iodine compounds were calculated with the data obtained from the test results. The theoretical mass attenuation coefficient values of these compounds were calculated with the WinXCOM data program. Also, we have performed the measurements for the calculations of experimental values mass attenuation coefficient using direct transmission experimental geometry. The transmission photon intensity of halogene iodine compounds were measured in a narrow beam experiment geometry was used 59.543 keV γ-ray from an 241Am radioactive source. The tranmissions spectra from iodine compounds were recorded with a Si (Li) detector having a resolution of 155 eV FWHM at 5.9 keV (55Fe) and coupled to a 1024 channel analyzer through a spectroscopic amplifier. This study was provided that new insights into the literature since mass attenuation coefficient experimental values of some I compounds have not been determined previously. More research should be done to observe the changes in the chemical structure of iodine compounds with gamma-ray interaction. This study will shed light on further research.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Sarai Lekchaum ◽  
Kitsakorn Locharoenrat

This contribution is aimed at designing the optimal thickness of lead-iron double-layer container to store a radioactive waste releasing the photon energy at 1.3325 MeV and initial radiation intensity at 100 mSv/hr using the optimization design by MATLAB software. This design consisted of three parts of calculations to achieve 1000 times the radiation attenuation of container. The first was the logarithmic interpolation for the mass attenuation coefficient. The second was the bilogarithmic interpolation for the exposure buildup factor. The third was the contour-plotting analytical technique for the optimal thickness of radiation container. The values of mass attenuation coefficient and exposure buildup factor were exactly validated as compared with the standard reference database. Furthermore, we have found that the optimal thickness was 3.2 cm for lead (1st layer) and 17.0 cm for iron (2nd layer). Container weight was 994.30 kg, whilst container cost was 167.30 USD. The benefit of our design can quickly and precisely apply for the radiation safety assessment of the occupational radiation workers who always work in the nuclear reactor area.


2021 ◽  
Vol 9 (04) ◽  
pp. 01-10
Author(s):  
Fajemiroye, Joseph Ademola

Information from workers on the profitability of cassava on Iwo and Egbeda soil series in Oyo state, Nigeria have shown the Iwo soil series to be more profitable given the same scale of cassava cultivation. Therefore the need arises to improve on the soil properties of Egbeda soil series which will possibly improve the production efficiency for this category of farmers. In this work, an experimental procedure using gamma attenuation technique to determine the mass attenuation coefficient at different gamma ray energies of 59.5, 661.7, 1173.2 and 1332.5 keV, and at depths of 0 – 15, 15 – 30, 30 – 45, 45 – 60, 60 – 75 and 75 – 90 cm into the Egbeda soil series profile have been studied. Likewise X-ray fluorescence, XRF, method was used to obtain the elemental composition and concentrations at these depths while the XCOM software was applied to obtain the photon mass attenuation coefficients at the different gamma ray energies for the depths. Mass attenuation coefficients,  obtained experimentally and that computed theoretically using XCOM varied exponentially with photon energy. The correlation coefficient between the experimentally-obtained and XCOM-obtained μs for the energies considered ranged from 0.89 – 0.96. The variation of  with soil depth show that the top soil (0 – 15cm depths) is least attenuating with gamma ray penetrability varying down the profile. Information on the mass attenuation coefficients, elemental composition, and concentrations at varying depths into the soil profile will go a long way in contributing to efforts at improving the soil condition of the Egbeda soil series.  


2014 ◽  
Vol 979 ◽  
pp. 395-400
Author(s):  
Natthakridta Chanthima ◽  
Kazuhito Shimada ◽  
Jakrapong Kaewkhao

The total mass attenuation coefficient (μ/ρ, cm2g-1) of gamma-ray for building materials containing with Lead Carbonate (PbCO3) have been studied. The raw building material have cement, sand and stone in the ratio 1 : 2 : 4. The raw material was mixed with 30% of PbCO3to be used as the sample material. The mass attenuation coefficient of the raw material has been calculated by theoretical approach using WinXCom program for the photon energy band from 1 keV to 100 GeV. The composition of sample material was analyzed by energy dispersive X-ray fluorescence spectrometer (EDXRF). The variations of mass attenuation coefficient are shown graphically and compared with that of standard shielding concretes. It was found that the sample building material has higher value of mass attenuation coefficient than standard shielding concretes at energy zone above 2–7 keV, 90–800 keV and 5 MeV–100 GeV.


2021 ◽  
Vol 19 (9) ◽  
pp. 152-158
Author(s):  
Mohammed Yahya Hadi ◽  
Ali Adil Turki Aldalawi ◽  
Karar Mahdi Talib

The effective atomic number (Z effective), total atomic cross-section (б Total) electron density (N effective) have been Measured depending on the mass attenuation coefficient (μ/ρ). By using Gamma-ray radiation (γ), emitted from sources (57𝐶𝑜, 133𝐵𝑎, 22𝑁𝑎, 137𝐶𝑠, 54𝑀𝑛, 𝑎𝑛𝑑 60𝐶𝑜) with energies from (0.122, 0.356,0.511,0.662,0.84,1.17,1.275 𝑎𝑛𝑑 1.33𝑀𝑒𝑉) respectively. using the Sodium Iodide Scintillation Detectors NaI(Tl) at 662 keV and resolution about 8.2% have been measured the mass attenuation coefficients for the sample “Palmitic acid” it’s chemical formula C16H32O2. The data from the mass attenuation coefficient were then employed to study Z effective, N effective, and б total of the sample. In the presence of gamma-ray energy, it was discovered that the effective atomic number and effective electron densities first drop and they tend to remain nearly constant. The experimental values obtained by Z effective and N effective were in excellent agreement with the theoretical values. The theoretical data that is accessible is obtained from XCom, which is available online. The study's findings aid in understanding how (μ/ρ) values change when Zeff and Neff values vary in the case of H, C, and O based biological molecules such as fatty acids.


Sign in / Sign up

Export Citation Format

Share Document