scholarly journals Removal of Hardness of Earth Alkaline Metals from Aqueous Solutions by Ion Exchange Method

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Gulten Cetin

An ion exchange process was introduced as an approach for softening of artificial hard water solutions. A strong acid cation exchange resin, Amberlite IR 120 [Na+], was used to reduce the hardness of water with the matrix of styrene-divinylbenzene copolymer having functional group as sulfonate. The ion exchange behavior of the ions of calcium and magnesium in synthetic solutions of hard water was investigated with the variables depending on pH, stirrer speed of the solutions and amount of the resin as a function of contact time between resin phase and hard water solution. The maximum ion exchange capacity was found to be 68 mg/g for Ca(II) and 12 mg/g for Mg(II) at pH 3.0. The method is a simple and efficient one to remove calcium and magnesium hardness from hard water solutions with the resin having more selectivity for calcium.

Economic feasibility has been studied for removal of copper from acid mine drainage wastewater by ion exchange. Ion exchange method has been used for removal of copper from industrial wastewaters. Experiments were conducted using packed bed column. The present study were carried out for solutions with concentrations of 100 mg/lit to 200 mg/lit and pH values of 3 to 6, using Indion 730, strong acid cation exchange resin. Under the present operating conditions considered, the strong acid type resin was found to bring down initial copper content by almost 46-56 % and at pH 5, 60% of copper removal for 200 mg/lit of initial concentration was found. The techno economic feasibility was then studied and the rate of return found to be 21% which is economically viable.


2016 ◽  
Vol 74 (2) ◽  
pp. 466-472 ◽  
Author(s):  
H. M. Citraningrum ◽  
Jhy-Chern Liu

Tetramethylammonium hydroxide (TMAH, TMA+) has been widely used as the photoresist developer in semiconductor and thin film transistor liquid crystal display manufacturing. In this study, TMAH-containing wastewater was treated by ion exchange method. Strong acid cation exchange resin was used. A kinetics study revealed that the ion exchange reaction reached equilibrium within 20 min and it could be described by a pseudo-second-order model. To assess the effects of competing ions, wastewater was spiked with three different amines, namely ethylamine (EA+), diethylamine (DEA+), and triethylamine (TEA+). TMAH uptake decreased when in the presence of amines, and it decreased in the order EA+ < DEA+ < TEA+. It could be attributed to different proton affinity (PA) and the strength of affinity between amine molecules and resin matrix, as found from the ab initio calculation values and Langmuir isotherm parameters. However, the interaction energy between sulphonic acid groups and interfering amines in solution using density functional theory (DFT) calculation resulted in a different trend compared with that of PA. The difference might be caused by stabilization of amines by resin matrix and different molecular structures.


1993 ◽  
Vol 71 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Amitha K. Hewavitharana ◽  
Byron Kratochvil

A quantitative ion-exchange/atomic absorption method is described for measuring the concentration of free (hydrated) calcium and magnesium in solution at micromolar levels. Sample solutions are pumped through a micro-column of strong acid-type cation-exchange resin until equilibrium has been achieved between resin and solution. After removal of interstitial solution by first air, then water, the sorbed metal ion is eluted from the resin with nitric acid directly into an atomic absorption spectrophotometer. In a 0.1 M 1:1 electrolyte, here KNO3, the amount of metal ion sorbed on the resin is directly proportional to the free metal ion concentration in solution over a concentration range of 1.25 to 5 × 10−5 mol/L (12–50 μmol/L). Selectivities for free calcium and magnesium in the presence of complexing ligands such as citrate and phosphate compare well with calculated values.


Author(s):  
Abdelhamid Addala ◽  
Moussa Boudiaf ◽  
Maria Elektorowicz ◽  
Embarek Bentouhami ◽  
Yacine Bengeurba

Abstract Under varied conditions, the IRC 718 ion-exchange resin is used to extract chromium (VI) ions from aqueous solutions. On chromium (VI) removal effectiveness, the effects of adsorption dosage, contact time, beginning metal concentration, and pH were examined. The batch ion exchange process reached equilibrium after around 90 minutes of interaction. With an initial chromium (VI) concentration of 0.5 mg/dm3, the pH-dependent ion-exchange mechanism revealed maximal removal in the pH 2.0–10 range . The adsorption mechanism occurs between Cr(VI) determined as the electron acceptor, and IRC 718 determined as the electron donor. The equilibrium ion-exchange potential and ion transfer quantities for Amberlite IRC 718 were calculated using the Langmuir adsorption isotherm model. The overall ion exchange capacity of the resin was determined to be 187.72 mg of chromium (VI)/g of resin at an ideal pH of 6.0.


2021 ◽  
Vol 17 ◽  
Author(s):  
Amita Somya ◽  
Mamata Singh

Background: With increasing population and decreased quality of drinking water, there is a great demand for the development of new materials and methods that can find applications in the purification of water. This paper presents our small effort from pollution to solution by presenting the synthesis method of new sodium lauryl sulphate supported thorium(IV) phosphate, its characterization, and disquisition of analytical applications by executing some dual separations of calcium. Methods: Sodium lauryl sulphate thorium(IV) phosphate was synthesized by sol gel method. The synthesized exchanger was characterized by some physico-chemical studies like powdered X-ray diffraction, Scanning electron microscopy, Thermo gravimetric-differential thermal analysis, EDAX and Fourier transform-infrared study and was also checked for its competency towards the ion exchange processes and in analytical chemistry. Results: The prominent characteristic of Sodium lauryl sulphate supported Thorium(IV) phosphate has been its tremendously high ion exchange capacity for sodium ions (3.10 meq/g) which is almost two and half times more than the exchange capacity of Thorium(IV) phosphate (ThP), i.e., 1.3 meq/g. The material was resulted in fibrous sheet which is quite thermally, mechanically stable and poorly crystalline. The material has shown selectivity towards Ca2+ and Hg2+ ions. Conclusion: The synthesized cation exchange material has been found quite thermally stable, showing drastically high exchange capacity and selectivity towards Hg2+ and Ca2+ metal ions which might be because of the use of an anionic surfactant, sodium lauryl sulphate while synthesis of Th(IV) phosphate which has played a key role in enhancing the exchange capacity and adsorption of specific metals as well. Therefore, based on the results obtained, the above said materials can find applications in water purification processes and also, in environmental pollution control where removal of Hg2+ and Ca2+ is required.


2005 ◽  
Vol 30 (1) ◽  
pp. 51-58 ◽  
Author(s):  
C. U. Ferreira ◽  
J. E. Gonçalves ◽  
Y. V. Kholin ◽  
Y. Gushikem

The porous mixed oxide SiO2/TiO2/Sb2O5 obtained by the sol-gel processing method presented a good ion exchange property and a high exchange capacity towards the Li+, Na+ and K+ ions. In the H+/M+ ion exchange process, the H+ / Na+ could be described as presenting an ideal character. The ion exchange equilibria of Li+ and K+ were quantitatively described with the help of the model of fixed tetradentate centers. The results of simulation evidence that for the H+ / Li+ exchange the usual situation takes place: the affinity of the material to the Li+ ions is decreased with increasing the degree of ion exchange. On the contrary, for K+ the effects of positive cooperativity, that facilitate the H+ / K+ exchange, were revealed.


1980 ◽  
Vol 63 (3) ◽  
pp. 460-461
Author(s):  
Saidul Z Qureshi ◽  
Fadhil M Najib ◽  
Fahmi A Mohammed

Abstract An ion exchange method to determine the alkalinity of water-soluble tea ash containing high levels of manganese is described. A chromatographic column containing a strong cation exchange resin (20–50 mesh) in Na+ form, with a bed volume of 5 mL is used. The present ion exchange method is compared to pH titrations and also to the official AOAC methods (31.012, 31.015, 31.016). Results with the new method are accurate and precise.


1969 ◽  
Vol 52 (4) ◽  
pp. 854-857
Author(s):  
Donald J Smith

Abstract An ion exchange procedure for Ephedrine Sulfate Sirup NF, based on the ability of ephedrine to be retained on a polystyrene sulfonate cation exchange resin column, was studied collaboratively by eight laboratories. The compound is held on the column by a positive charge located in the cationic center of the molecule, it is then eluted with hydrochloric acid, and its ultraviolet absorption is measured. The addition of 57.88 mg ephedrine sulfate to Ephedrine Sulfate Sirup NF resulted in recoveries of 58.39 and 57.72 mg, or 101 and 100%, respectively. Recoveries for collaborative samples, each containing 19.22 and 19.33 mg/5 ml, were 99.8 ± 1.83 and 101 ± 4.09%, respectively.


2009 ◽  
Vol 1240 ◽  
Author(s):  
Prabir K Patra ◽  
Sukalyan Sengupta

AbstractWe have synthesized a series of ion exchange functionalized fibers (IXF) from polystyrene (PS) and polyacrylonitrile (PAN). To obtain strong-acid cation exchange fibers, polystyrene was sulfonated using specific sulfonation protocols. Micron sized fibers (average diameter of 100m) were then produced from the functionalized polystyrene using a single-screw extruder equipped with a 30 hole spinneret with orifice diameter of 0.5 mm with a precise screw speed of 5 rpm, pump speed of 15 rpm, and with a feed rate of 2.4 cc/min. The extruder zone temperature was kept at 250 – 270 °C. Fiber was drawn at 120 degree with a draw ratio of 2. Electrospinning of functionalized polystyrene was also carried out to produce ultrafine functionalized fibers of 100 nm in average diameter. We have also electrospun polystyrene and polyisoprene blended nanofibers to increase the strength of the resulting blend nanofibers compared to pure PS nanofibers. To synthesize weak-acid cation exchange fibers polyacrylonitrile (PAN) was electrospun and the nanofibers obtained were alkaline hydrolyzed with 2 N NaOH for 20 minutes at room temperature to convert nitrile bonds to carboxylate. Cation exchange capacity (CEC) of the microfibers and nanofibers was determined. Sulfonated PS microfibers show high CEC of 4.0 meq/gm compared to that of nanofibers with 2.5 meq/gm. CEC of blended nanofibers of PS and polyisoprene was 2.0 meq/gm. In case of PAN fibers, nanosized electrospun fibers were found to show a CEC of 1.5 meq/gm. Weak-base anion exchange fiber synthesis was undertaken using appropriate protocol and its CEC was measured. For all IXF synthesized, fiber diameter was measured using SEM, degree of functionalization was qualitatively determined using FTIR and ion exchange capacity was computed after mass balance on a binary exchange system after equilibrium.


Sign in / Sign up

Export Citation Format

Share Document