scholarly journals Amberlite IRC-718 ion chelating resin extraction of hazardous metal Cr (VI) from aqueous solutions: equilibrium and theoretical modeling

Author(s):  
Abdelhamid Addala ◽  
Moussa Boudiaf ◽  
Maria Elektorowicz ◽  
Embarek Bentouhami ◽  
Yacine Bengeurba

Abstract Under varied conditions, the IRC 718 ion-exchange resin is used to extract chromium (VI) ions from aqueous solutions. On chromium (VI) removal effectiveness, the effects of adsorption dosage, contact time, beginning metal concentration, and pH were examined. The batch ion exchange process reached equilibrium after around 90 minutes of interaction. With an initial chromium (VI) concentration of 0.5 mg/dm3, the pH-dependent ion-exchange mechanism revealed maximal removal in the pH 2.0–10 range . The adsorption mechanism occurs between Cr(VI) determined as the electron acceptor, and IRC 718 determined as the electron donor. The equilibrium ion-exchange potential and ion transfer quantities for Amberlite IRC 718 were calculated using the Langmuir adsorption isotherm model. The overall ion exchange capacity of the resin was determined to be 187.72 mg of chromium (VI)/g of resin at an ideal pH of 6.0.

2016 ◽  
Vol 32 (4) ◽  
pp. 129-140 ◽  
Author(s):  
Agnieszka Bożęcka ◽  
Monika Orlof-Naturalna ◽  
Stanisława Sanak-Rydlewska

Abstract Industrial waste solutions may contain toxic Pb, Cu, Cd and other metal ions. These ions may also be components of leachates in landfills of ores. The toxicity of the ionic forms of these metals is high. For this reason the paper presents the results of studies on one of the methods to reduce their concentration in aqueous solutions. The article presents the results of studies on the removal of Pb2+, Cd2+ and Cu2+ ions from model aqueous solutions with synthetic ion exchange resin C 160 produced by Purolite. The investigated ion exchanger contains sulfonic acid groups (-SO3H) in its structure and is a strongly acidic cation-exchange resin. The range of the studied initial concentrations of the Pb2+, Cd2+ and Cu2+ ions in the solutions was from 6.25 mg/L to 109.39 mg/L. The results confirmed that the used ion exchange resin C160 efficiently removes the above-mentioned ions from the studied solutions. The highest degree of purification was achieved in lead solutions for the assumed range of concentrations and conditions of the ion exchange process. It reached 99.9%. In the case of other solutions, the ion exchange process occurs with lower efficiency, however it remains high and amounts to over 90% for all the ions. The results of research were interpreted on the basis of the Langmuir adsorption model. For each studied ion, sorption capacity of the ion exchange resin increases until the saturation and equilibrium state is reached. Based on the interpretation of the Langmuir equation coefficients, an indication can be made that the studied ion exchange resin has a major sorption capacity towards the copper ions. In their case, the highest value of constant qmax was obtained in the Langmuir isotherm. For Cu2+ ions it was 468.42 mg/g. For Pb2+ and Cd2+ ions, this parameter reached the values of 112.17 mg/g and 31.76 mg/g, respectively. Ion exchange resin C 160 shows the highest affinity for the Pb2+ ions. In this case, the achieved value of coefficient b is highest and equals 1.437 L/mg.


2006 ◽  
Vol 6 (3) ◽  
pp. 35-41 ◽  
Author(s):  
R. Baciocchi ◽  
A. Chiavola

This paper provides new insights on the regeneration step of an ion exchange process for the treatment of surface and ground water characterized by high sulphate concentration. Repeated regeneration of ion exchange resin with a sodium chloride solution (brine) did not alter the resin performances with respect to the fresh one. Besides, neither the sodium chloride concentration of the brine, which was varied between 1 and 3 M, nor the presence of sulphates at concentrations up to 20 g/L in the brine, did notably affect the regeneration efficiency. The brine was effectively treated by adding calcium or barium chloride, in order to remove the sulphates and re-establish the original chloride concentration. Calcium chloride was allowed to obtain up to 70% sulphate precipitation, whereas an almost 100% precipitation efficiency was obtained when barium chloride was used. The precipitation step was described by a model based on the mass action, coupled to the Bromley model for the description of the non-ideal behaviour of the electrolytic solution. This model was shown to give correct, or at least conservative, estimates of the equilibrium sulphate concentration when either calcium or barium chloride was used as precipitating agent.


2005 ◽  
Vol 30 (1) ◽  
pp. 51-58 ◽  
Author(s):  
C. U. Ferreira ◽  
J. E. Gonçalves ◽  
Y. V. Kholin ◽  
Y. Gushikem

The porous mixed oxide SiO2/TiO2/Sb2O5 obtained by the sol-gel processing method presented a good ion exchange property and a high exchange capacity towards the Li+, Na+ and K+ ions. In the H+/M+ ion exchange process, the H+ / Na+ could be described as presenting an ideal character. The ion exchange equilibria of Li+ and K+ were quantitatively described with the help of the model of fixed tetradentate centers. The results of simulation evidence that for the H+ / Li+ exchange the usual situation takes place: the affinity of the material to the Li+ ions is decreased with increasing the degree of ion exchange. On the contrary, for K+ the effects of positive cooperativity, that facilitate the H+ / K+ exchange, were revealed.


2019 ◽  
Vol 8 (5) ◽  
pp. 4464-4469 ◽  
Author(s):  
Amilton Barbosa Botelho Junior ◽  
André de Albuquerque Vicente ◽  
Denise Crocce Romano Espinosa ◽  
Jorge Alberto Soares Tenório

2018 ◽  
Vol 17 (8) ◽  
pp. 1967-1976 ◽  
Author(s):  
Baybars Ali Fil ◽  
Alper Erdem Yilmaz ◽  
Recep Boncukcuoglu ◽  
Serkan Bayar

2017 ◽  
Vol 37 (1) ◽  
pp. 605-612 ◽  
Author(s):  
Irina Bleotu ◽  
Elena Niculina Dragoi ◽  
Mihaela Mureşeanu ◽  
Sorin-Aurel Dorneanu

2017 ◽  
Vol 262 ◽  
pp. 265-268 ◽  
Author(s):  
Radek Vostal ◽  
Ute Šingliar ◽  
Martin Bertau

Using a commercially available solvent impregnated resin, Lewatit TP272, in an ion exchange process, it was possible to extract up to 90 % indium from a feed containing as little as 1 mg/L indium in the presence of high amounts of impurities, i.e. 1000 mg/L iron and zinc each. It was demonstrated that through gradient regeneration of obtained loaded ion-exchange resin, it is possible to yield a solution containing as much as 400 mg/L indium along with 400 mg/L iron, thereby upgrading its purity more than 600 times. Moreover, it was shown that this solution can be fed into an existing solvent extraction procedure which would yield an indium oxide with more than 99 % purity.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Kaushik Kudtarkar ◽  
Patricia Iglesias ◽  
Thomas W. Smith ◽  
Michael J. Schertzer

This investigation demonstrates that metallization can be used to tailor the electromechanical properties of polymer beads. Rigid ion exchange resin beads and softer microfluidically synthesized polyionic liquid hydrogel beads were metallized using an ion exchange process. Metallization increased bead stiffness and dielectric coefficient while reducing resistivity in all beads examined here. Gold-filled beads were preferable over platinum-filled beads as they generated greater changes in electrical properties with smaller increased stiffness. These properties could be further altered by performing multiple metallization steps, but diminishing returns were observed with each step. Ion exchange resin beads were always stable after multiple metallization steps, but polyionic beads would often rupture when repeatedly compressed. Polyionic beads with higher ionic liquid (IL) content were more fragile, and beads synthesized from monomer solutions containing 1% IL were mechanically robust after three metallization steps. These 1% IL beads delivered similar electrical properties as the IONAC beads that also underwent three metallization steps at a significantly reduced stiffness.


Sign in / Sign up

Export Citation Format

Share Document