scholarly journals Dynamical Behavior and Stability Analysis in a Hybrid Epidemiological-Economic Model with Incubation

2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Chao Liu ◽  
Wenquan Yue ◽  
Peiyong Liu

A hybrid SIR vector disease model with incubation is established, where susceptible host population satisfies the logistic equation and the recovered host individuals are commercially harvested. It is utilized to discuss the transmission mechanism of infectious disease and dynamical effect of commercial harvest on population dynamics. Positivity and permanence of solutions are analytically investigated. By choosing economic interest of commercial harvesting as a parameter, dynamical behavior and local stability of model system without time delay are studied. It reveals that there is a phenomenon of singularity induced bifurcation as well as local stability switch around interior equilibrium when economic interest increases through zero. State feedback controllers are designed to stabilize model system around the desired interior equilibria in the case of zero economic interest and positive economic interest, respectively. By analyzing corresponding characteristic equation of model system with time delay, local stability analysis around interior equilibrium is discussed due to variation of time delay. Hopf bifurcation occurs at the critical value of time delay and corresponding limit cycle is also observed. Furthermore, directions of Hopf bifurcation and stability of the bifurcating periodic solutions are studied. Numerical simulations are carried out to show consistency with theoretical analysis.

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Chao Liu ◽  
Qingling Zhang

We propose a prey predator model with stage structure for prey. A discrete delay and a distributed delay for predator described by an integral with a strong delay kernel are also considered. Existence of two feasible boundary equilibria and a unique interior equilibrium are analytically investigated. By analyzing associated characteristic equation, local stability analysis of boundary equilibrium and interior equilibrium is discussed, respectively. It reveals that interior equilibrium is locally stable when discrete delay is less than a critical value. According to Hopf bifurcation theorem for functional differential equations, it can be found that model undergoes Hopf bifurcation around the interior equilibrium when local stability switch occurs and corresponding stable limit cycle is observed. Furthermore, directions of Hopf bifurcation and stability of the bifurcating periodic solutions are studied based on normal form theory and center manifold theorem. Numerical simulations are carried out to show consistency with theoretical analysis.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zizhen Zhang ◽  
Ruibin Wei ◽  
Wanjun Xia

AbstractIn this paper, we are concerned with a delayed smoking model in which the population is divided into five classes. Sufficient conditions guaranteeing the local stability and existence of Hopf bifurcation for the model are established by taking the time delay as a bifurcation parameter and employing the Routh–Hurwitz criteria. Furthermore, direction and stability of the Hopf bifurcation are investigated by applying the center manifold theorem and normal form theory. Finally, computer simulations are implemented to support the analytic results and to analyze the effects of some parameters on the dynamical behavior of the model.


2009 ◽  
Vol 09 (01) ◽  
pp. 123-140 ◽  
Author(s):  
CHAO LIU ◽  
QINGLING ZHANG ◽  
XUE ZHANG

Nowadays, the biological resource in the prey–predator ecosystem is commercially harvested and sold with the aim of achieving economic interest. Furthermore, the harvest effort is usually influenced by the variation of economic interest of harvesting. In this paper, a differential–algebraic model is proposed, which is utilized to investigate the dynamical behavior of the prey–predator ecosystem due to the variation of economic interest of harvesting. By discussing the local stability of the proposed model around the interior equilibrium, the instability mechanism of harvested prey–predator ecosystem is studied. With the purpose of stabilizing the proposed model around the interior equilibrium and maintaining the economic interest of harvesting at an ideal level, a feedback controller is designed. Finally, numerical simulations are carried out to demonstrate consistency with the theoretical analysis.


2009 ◽  
Vol 17 (04) ◽  
pp. 759-777 ◽  
Author(s):  
CHAO LIU ◽  
QINGLING ZHANG ◽  
JAMES HUANG ◽  
WANSHENG TANG

A prey-predator model with stage structure for prey and selective harvest effort on predator is proposed, in which gestation delay is considered and taxation is used as a control instrument to protect the population from overexploitation. It is established that when the discrete time delay is zero, the model system is stable around the interior equilibrium and an optimal harvesting policy is discussed with the help of Pontryagin's maximum principle; On the other hand, stability switch of the model system due to the variation of discrete time delay is also studied, which reveals that the discrete time delay has a destabilizing effect. As the discrete time delay increases through a certain threshold, a phenomenon of Hopf bifurcation occurs and a limit cycle corresponding to the periodic solution of model system is also observed. Numerical simulations are carried out to show the consistency with theoretical analysis.


2012 ◽  
Vol 472-475 ◽  
pp. 2940-2943
Author(s):  
Zhi Chao Jiang ◽  
Hui Chen

A stage-structured predator-prey system with time delay is considered. By analyzing the characteristic equations, the local stability of a positive equilibrium and a boundary equilibrium is discussed, respectively. Furthermore, it is proved that the system undergoes a Hopf bifurcation at the positive equilibrium when . The estimation of the length of delay to preserve stability has also been calculated.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
Changjin Xu ◽  
Yusen Wu

A delayed predator-prey model with disease in the prey is investigated. The conditions for the local stability and the existence of Hopf bifurcation at the positive equilibrium of the system are derived. The effect of the two different time delays on the dynamical behavior has been given. Numerical simulations are performed to illustrate the theoretical analysis. Finally, the main conclusions are drawn.


2012 ◽  
Vol 05 (03) ◽  
pp. 1260017 ◽  
Author(s):  
LING CHEN ◽  
WANBIAO MA

In this paper, based on some biological meanings and a model which was proposed by Lefever and Garay (1978), a nonlinear delay model describing the growth of tumor cells under immune surveillance against cancer is given. Then, boundedness of the solutions, local stability of the equilibria and Hopf bifurcation of the model are discussed in details. The existence of periodic solutions explains the restrictive interactions between immune surveillance and the growth of the tumor cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-19
Author(s):  
Xin-You Meng ◽  
Jiao-Guo Wang ◽  
Hai-Feng Huo

In this paper, a Holling type IV nutrient-plankton model with time delay and linear plankton harvesting is investigated. The existence and local stability of all equilibria of model without time delay are given. Regarding time delay as bifurcation parameter, such system around the interior equilibrium loses its local stability, and Hopf bifurcation occurs when time delay crosses its critical value. In addition, the properties of the bifurcating periodic solutions are investigated based on normal form theory and center manifold theorem. What is more, the global continuation of the local Hopf bifurcation is discussed by using a global Hopf bifurcation result. Furthermore, the optimal harvesting is obtained by the Pontryagin’s Maximum Principle. Finally, some numerical simulations are given to confirm our theoretical analysis.


2000 ◽  
Vol 08 (03) ◽  
pp. 255-261 ◽  
Author(s):  
DEBASIS MUKHERJEE ◽  
SANTANU RAY ◽  
DILIP KUMAR SINHA

This article concentrates on the study of delay effect of a mangrove ecosystem of detritus, detritivores and predator of detritivores. Local stability criteria are derived in the absence of delays. Conditions are found out for which the system undergoes a Hopf bifurcation. Further conditions are derived for which there can be no change in stability.


2015 ◽  
Vol 08 (06) ◽  
pp. 1550079
Author(s):  
M. Javidi ◽  
N. Nyamoradi

In this paper, we investigate the dynamical behavior of a fractional order phytoplankton–zooplankton system. In this paper, stability analysis of the phytoplankton–zooplankton model (PZM) is studied by using the fractional Routh–Hurwitz stability conditions. We have studied the local stability of the equilibrium points of PZM. We applied an efficient numerical method based on converting the fractional derivative to integer derivative to solve the PZM.


Sign in / Sign up

Export Citation Format

Share Document