scholarly journals Modeling and Implementing Two-Stage AdaBoost for Real-Time Vehicle License Plate Detection

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Moon Kyou Song ◽  
Md. Mostafa Kamal Sarker

License plate (LP) detection is the most imperative part of the automatic LP recognition system. In previous years, different methods, techniques, and algorithms have been developed for LP detection (LPD) systems. This paper proposes to automatical detection of car LPs via image processing techniques based on classifier or machine learning algorithms. In this paper, we propose a real-time and robust method for LPD systems using the two-stage adaptive boosting (AdaBoost) algorithm combined with different image preprocessing techniques. Haar-like features are used to compute and select features from LP images. The AdaBoost algorithm is used to classify parts of an image within a search window by a trained strong classifier as either LP or non-LP. Adaptive thresholding is used for the image preprocessing method applied to those images that are of insufficient quality for LPD. This method is of a faster speed and higher accuracy than most of the existing methods used in LPD. Experimental results demonstrate that the average LPD rate is 98.38% and the computational time is approximately 49 ms.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 405
Author(s):  
Marcos Lupión ◽  
Javier Medina-Quero ◽  
Juan F. Sanjuan ◽  
Pilar M. Ortigosa

Activity Recognition (AR) is an active research topic focused on detecting human actions and behaviours in smart environments. In this work, we present the on-line activity recognition platform DOLARS (Distributed On-line Activity Recognition System) where data from heterogeneous sensors are evaluated in real time, including binary, wearable and location sensors. Different descriptors and metrics from the heterogeneous sensor data are integrated in a common feature vector whose extraction is developed by a sliding window approach under real-time conditions. DOLARS provides a distributed architecture where: (i) stages for processing data in AR are deployed in distributed nodes, (ii) temporal cache modules compute metrics which aggregate sensor data for computing feature vectors in an efficient way; (iii) publish-subscribe models are integrated both to spread data from sensors and orchestrate the nodes (communication and replication) for computing AR and (iv) machine learning algorithms are used to classify and recognize the activities. A successful case study of daily activities recognition developed in the Smart Lab of The University of Almería (UAL) is presented in this paper. Results present an encouraging performance in recognition of sequences of activities and show the need for distributed architectures to achieve real time recognition.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 55
Author(s):  
Nicole do Vale Dalarmelina ◽  
Marcio Andrey Teixeira ◽  
Rodolfo I. Meneguette

Automatic License Plate Recognition has been a recurrent research topic due to the increasing number of cameras available in cities, where most of them, if not all, are connected to the Internet. The video traffic generated by the cameras can be analyzed to provide useful insights for the transportation segment. This paper presents the development of an intelligent vehicle identification system based on optical character recognition (OCR) method to be used on intelligent transportation systems. The proposed system makes use of an intelligent parking system named Smart Parking Service (SPANS), which is used to manage public or private spaces. Using computer vision techniques, the SPANS system is used to detect if the parking slots are available or not. The proposed system makes use of SPANS framework to capture images of the parking spaces and identifies the license plate number of the vehicles that are moving around the parking as well as parked in the parking slots. The recognition of the license plate is made in real-time, and the performance of the proposed system is evaluated in real-time.


Author(s):  
Shaimaa Ahmed Elsaid ◽  
Haifa Alharthi ◽  
Reem Alrubaia ◽  
Sarah Abutile ◽  
Rawan Aljres ◽  
...  

2011 ◽  
Vol 393-395 ◽  
pp. 471-475
Author(s):  
Yu Yuan ◽  
Cong Ming Li ◽  
Bao Liang Li

License plate recognition is an important application topic of computer vision and pattern recognition technology in intelligent transportation field. Recognition system, which can automatically extract the license plate and segment the characters from an image, then recognize the characters, is a special computer vision system based on specific targets for the object. Generally, the system consists of hardware and software. In recent years, with the rapid development of LabVIEW software, LabVIEW not only has powerful data processing function, but also provides a lot of various kits. This paper is mainly to complete the functions of image preprocessing, license plate localization and license plate segmentation etc., by processing acquired image based on LabVIEW software programming.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 90
Author(s):  
Giovanni Bucci ◽  
Fabrizio Ciancetta ◽  
Edoardo Fiorucci ◽  
Simone Mari ◽  
Andrea Fioravanti

The topic of non-intrusive load monitoring (NILM) has seen a significant increase in research interest over the past decade, which has led to a significant increase in the performance of these systems. Nowadays, NILM systems are used in numerous applications, in particular by energy companies that provide users with an advanced management service of different consumption. These systems are mainly based on artificial intelligence algorithms that allow the disaggregation of energy by processing the absorbed power signal over more or less long time intervals (generally from fractions of an hour up to 24 h). Less attention was paid to the search for solutions that allow non-intrusive monitoring of the load in (almost) real time, that is, systems that make it possible to determine the variations in loads in extremely short times (seconds or fractions of a second). This paper proposes possible approaches for non-intrusive load monitoring systems operating in real time, analysing them from the point of view of measurement. The measurement and post-processing techniques used are illustrated and the results discussed. In addition, the work discusses the use of the results obtained to train machine learning algorithms that allow you to convert the measurement results into useful information for the user.


2021 ◽  
Vol 13 (16) ◽  
pp. 3222
Author(s):  
Seyed Vahid Razavi-Termeh ◽  
Abolghasem Sadeghi-Niaraki ◽  
Soo-Mi Choi

In this study, asthma-prone area modeling of Tehran, Iran was provided by employing three ensemble machine learning algorithms (Bootstrap aggregating (Bagging), Adaptive Boosting (AdaBoost), and Stacking). First, a spatial database was created with 872 locations of asthma patients and affecting factors (particulate matter (PM10 and PM2.5), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), rainfall, wind speed, humidity, temperature, distance to street, traffic volume, and a normalized difference vegetation index (NDVI)). We created four factors using remote sensing (RS) imagery, including air pollution (O3, SO2, CO, and NO2), altitude, and NDVI. All criteria were prepared using a geographic information system (GIS). For modeling and validation, 70% and 30% of the data were used, respectively. The weight of evidence (WOE) model was used to assess the spatial relationship between the dependent and independent data. Finally, three ensemble algorithms were used to perform asthma-prone areas mapping. According to the Gini index, the most influential factors on asthma occurrence were distance to the street, NDVI, and traffic volume. The area under the curve (AUC) of receiver operating characteristic (ROC) values for the AdaBoost, Bagging, and Stacking algorithms was 0.849, 0.82, and 0.785, respectively. According to the findings, the AdaBoost algorithm outperforms the Bagging and Stacking algorithms in spatial modeling of asthma-prone areas.


Sign in / Sign up

Export Citation Format

Share Document