scholarly journals Quad-PRE: A Hybrid Method to Predict Protein Quaternary Structure Attributes

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yajun Sheng ◽  
Xingye Qiu ◽  
Chen Zhang ◽  
Jun Xu ◽  
Yanping Zhang ◽  
...  

The protein quaternary structure is very important to the biological process. Predicting their attributes is an essential task in computational biology for the advancement of the proteomics. However, the existing methods did not consider sufficient properties of amino acid. To end this, we proposed a hybrid method Quad-PRE to predict protein quaternary structure attributes using the properties of amino acid, predicted secondary structure, predicted relative solvent accessibility, and position-specific scoring matrix profiles and motifs. Empirical evaluation on independent dataset shows that Quad-PRE achieved higher overall accuracy 81.7%, especially higher accuracy 92.8%, 93.3%, and 90.6% on discrimination for trimer, hexamer, and octamer, respectively. Our model also reveals that six features sets are all important to the prediction, and a hybrid method is an optimal strategy by now. The results indicate that the proposed method can classify protein quaternary structure attributes effectively.

Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 445-458 ◽  
Author(s):  
Nick Goldman ◽  
Jeffrey L Thorne ◽  
David T Jones

Abstract Empirically derived models of amino acid replacement are employed to study the association between various physical features of proteins and evolution. The strengths of these associations are statistically evaluated by applying the models of protein evolution to 11 diverse sets of protein sequences. Parametric bootstrap tests indicate that the solvent accessibility status of a site has a particularly strong association with the process of amino acid replacement that it experiences. Significant association between secondary structure environment and the amino acid replacement process is also observed. Careful description of the length distribution of secondary structure elements and of the organization of secondary structure and solvent accessibility along a protein did not always significantly improve the fit of the evolutionary models to the data sets that were analyzed. As indicated by the strength of the association of both solvent accessibility and secondary structure with amino acid replacement, the process of protein evolution—both above and below the species level—will not be well understood until the physical constraints that affect protein evolution are identified and characterized.


2013 ◽  
Author(s):  
◽  
Xin Deng

Protein sequence and profile alignment has been used essentially in most bioinformatics tasks such as protein structure modeling, function prediction, and phylogenetic analysis. We designed a new algorithm MSACompro to incorporate predicted secondary structure, relative solvent accessibility, and residue-residue contact information into multiple protein sequence alignment. Our experiments showed that it improved multiple sequence alignment accuracy over most existing methods without using the structural information and performed comparably to the method using structural features and additional homologous sequences by slightly lower scores. We also developed HHpacom, a new profile-profile pairwise alignment by integrating secondary structure, solvent accessibility, torsion angle and inferred residue pair coupling information. The evaluation showed that the secondary structure, relative solvent accessibility and torsion angle information significantly improved the alignment accuracy in comparison with the state of the art methods HHsearch and HHsuite. The evolutionary constraint information did help in some cases, especially the alignments of the proteins which are of short lengths, typically 100 to 500 residues. Protein Model selection is also a key step in protein tertiary structure prediction. We developed two SVM model quality assessment methods taking query-template alignment as input. The assessment results illustrated that this could help improve the model selection, protein structure prediction and many other bioinformatics problems. Moreover, we also developed a protein tertiary structure prediction pipeline, of which many components were built in our group’s MULTICOM system. The MULTICOM performed well in the CASP10 (Critical Assessment of Techniques for Protein Structure Prediction) competition.


Biology ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 64 ◽  
Author(s):  
Akanksha Pandey ◽  
Edward L. Braun

Phylogenomics, the use of large datasets to examine phylogeny, has revolutionized the study of evolutionary relationships. However, genome-scale data have not been able to resolve all relationships in the tree of life; this could reflect, at least in part, the poor-fit of the models used to analyze heterogeneous datasets. Some of the heterogeneity may reflect the different patterns of selection on proteins based on their structures. To test that hypothesis, we developed a pipeline to divide phylogenomic protein datasets into subsets based on secondary structure and relative solvent accessibility. We then tested whether amino acids in different structural environments had distinct signals for the topology of the deepest branches in the metazoan tree. We focused on a dataset that appeared to have a mixture of signals and we found that the most striking difference in phylogenetic signal reflected relative solvent accessibility. Analyses of exposed sites (residues located on the surface of proteins) yielded a tree that placed ctenophores sister to all other animals whereas sites buried inside proteins yielded a tree with a sponge+ctenophore clade. These differences in phylogenetic signal were not ameliorated when we conducted analyses using a set of maximum-likelihood profile mixture models. These models are very similar to the Bayesian CAT model, which has been used in many analyses of deep metazoan phylogeny. In contrast, analyses conducted after recoding amino acids to limit the impact of deviations from compositional stationarity increased the congruence in the estimates of phylogeny for exposed and buried sites; after recoding amino acid trees estimated using the exposed and buried site both supported placement of ctenophores sister to all other animals. Although the central conclusion of our analyses is that sites in different structural environments yield distinct trees when analyzed using models of protein evolution, our amino acid recoding analyses also have implications for metazoan evolution. Specifically, our results add to the evidence that ctenophores are the sister group of all other animals and they further suggest that the placozoa+cnidaria clade found in some other studies deserves more attention. Taken as a whole, these results provide striking evidence that it is necessary to achieve a better understanding of the constraints due to protein structure to improve phylogenetic estimation.


2019 ◽  
Author(s):  
Ana Filipa Moutinho ◽  
Fernanda Fontes Trancoso ◽  
Julien Yann Dutheil

AbstractAdaptive mutations play an important role in molecular evolution. However, the frequency and nature of these mutations at the intra-molecular level is poorly understood. To address this, we analysed the impact of protein architecture on the rate of adaptive substitutions, aiming to understand how protein biophysics influences fitness and adaptation. Using Drosophila melanogaster and Arabidopsis thaliana population genomics data, we fitted models of distribution of fitness effects and estimated the rate of adaptive amino-acid substitutions both at the protein and amino-acid residue level. We performed a comprehensive analysis covering genome, gene and protein structure, by exploring a multitude of factors with a plausible impact on the rate of adaptive evolution, such as intron number, protein length, secondary structure, relative solvent accessibility, intrinsic protein disorder, chaperone affinity, gene expression, protein function and protein-protein interactions. We found that the relative solvent accessibility is a major driver of adaptive evolution, with most adaptive mutations occurring at the surface of proteins. Moreover, we observe that the rate of adaptive substitutions differs between protein functional classes, with genes encoding for protein biosynthesis and degradation signalling exhibiting the fastest rates of protein adaptation. Overall, our results suggest that adaptive evolution in proteins is mainly driven by inter-molecular interactions, with host-pathogen coevolution likely playing a major role.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thanh Thi Nguyen ◽  
Pubudu N. Pathirana ◽  
Thin Nguyen ◽  
Quoc Viet Hung Nguyen ◽  
Asim Bhatti ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly pathogenic virus that has caused the global COVID-19 pandemic. Tracing the evolution and transmission of the virus is crucial to respond to and control the pandemic through appropriate intervention strategies. This paper reports and analyses genomic mutations in the coding regions of SARS-CoV-2 and their probable protein secondary structure and solvent accessibility changes, which are predicted using deep learning models. Prediction results suggest that mutation D614G in the virus spike protein, which has attracted much attention from researchers, is unlikely to make changes in protein secondary structure and relative solvent accessibility. Based on 6324 viral genome sequences, we create a spreadsheet dataset of point mutations that can facilitate the investigation of SARS-CoV-2 in many perspectives, especially in tracing the evolution and worldwide spread of the virus. Our analysis results also show that coding genes E, M, ORF6, ORF7a, ORF7b and ORF10 are most stable, potentially suitable to be targeted for vaccine and drug development.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255076
Author(s):  
Teng-Ruei Chen ◽  
Sheng-Hung Juan ◽  
Yu-Wei Huang ◽  
Yen-Cheng Lin ◽  
Wei-Cheng Lo

Protein secondary structure prediction (SSP) has a variety of applications; however, there has been relatively limited improvement in accuracy for years. With a vision of moving forward all related fields, we aimed to make a fundamental advance in SSP. There have been many admirable efforts made to improve the machine learning algorithm for SSP. This work thus took a step back by manipulating the input features. A secondary structure element-based position-specific scoring matrix (SSE-PSSM) is proposed, based on which a new set of machine learning features can be established. The feasibility of this new PSSM was evaluated by rigid independent tests with training and testing datasets sharing <25% sequence identities. In all experiments, the proposed PSSM outperformed the traditional amino acid PSSM. This new PSSM can be easily combined with the amino acid PSSM, and the improvement in accuracy was remarkable. Preliminary tests made by combining the SSE-PSSM and well-known SSP methods showed 2.0% and 5.2% average improvements in three- and eight-state SSP accuracies, respectively. If this PSSM can be integrated into state-of-the-art SSP methods, the overall accuracy of SSP may break the current restriction and eventually bring benefit to all research and applications where secondary structure prediction plays a vital role during development. To facilitate the application and integration of the SSE-PSSM with modern SSP methods, we have established a web server and standalone programs for generating SSE-PSSM available at http://10.life.nctu.edu.tw/SSE-PSSM.


2020 ◽  
Author(s):  
Thanh Thi Nguyen ◽  
Pubudu N. Pathirana ◽  
Thin Nguyen ◽  
Henry Nguyen ◽  
Asim Bhatti ◽  
...  

ABSTRACTSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly pathogenic virus that has caused the global COVID-19 pandemic. Tracing the evolution and transmission of the virus is crucial to respond to and control the pandemic through appropriate intervention strategies. This paper reports and analyses genomic mutations in the coding regions of SARS-CoV-2 and their probable protein secondary structure and solvent accessibility changes, which are predicted using deep learning models. Prediction results suggest that mutation D614G in the virus spike protein, which has attracted much attention from researchers, is unlikely to make changes in protein secondary structure and relative solvent accessibility. Based on 6,324 viral genome sequences, we create a spreadsheet dataset of point mutations that can facilitate the investigation of SARS-CoV-2 in many perspectives, especially in tracing the evolution and worldwide spread of the virus. Our analysis results also show that coding genes E, M, ORF6, ORF7a, ORF7b and ORF10 are most stable, potentially suitable to be targeted for vaccine and drug development.


Sign in / Sign up

Export Citation Format

Share Document