position specific scoring matrix
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255076
Author(s):  
Teng-Ruei Chen ◽  
Sheng-Hung Juan ◽  
Yu-Wei Huang ◽  
Yen-Cheng Lin ◽  
Wei-Cheng Lo

Protein secondary structure prediction (SSP) has a variety of applications; however, there has been relatively limited improvement in accuracy for years. With a vision of moving forward all related fields, we aimed to make a fundamental advance in SSP. There have been many admirable efforts made to improve the machine learning algorithm for SSP. This work thus took a step back by manipulating the input features. A secondary structure element-based position-specific scoring matrix (SSE-PSSM) is proposed, based on which a new set of machine learning features can be established. The feasibility of this new PSSM was evaluated by rigid independent tests with training and testing datasets sharing <25% sequence identities. In all experiments, the proposed PSSM outperformed the traditional amino acid PSSM. This new PSSM can be easily combined with the amino acid PSSM, and the improvement in accuracy was remarkable. Preliminary tests made by combining the SSE-PSSM and well-known SSP methods showed 2.0% and 5.2% average improvements in three- and eight-state SSP accuracies, respectively. If this PSSM can be integrated into state-of-the-art SSP methods, the overall accuracy of SSP may break the current restriction and eventually bring benefit to all research and applications where secondary structure prediction plays a vital role during development. To facilitate the application and integration of the SSE-PSSM with modern SSP methods, we have established a web server and standalone programs for generating SSE-PSSM available at http://10.life.nctu.edu.tw/SSE-PSSM.


2020 ◽  
Vol 15 ◽  
Author(s):  
Li Qian ◽  
Yu Jiang ◽  
Yan YuXuan ◽  
Chen Yuan ◽  
Tan SiQiao

Background: Predicting the protein-ATP binding sites is a highly unbalanced binary classification problem, and higher precision prediction through the machine learning methods is of great significance to the researches on proteins’ functions and the design of drugs. Objective: Most existing researches typically select 17aa as the length of window by experience, and extract features by the Position-specific Scoring Matrix (PSSM), and then construct models predicting with SVC. However, the independent prediction values obtained in these researches are either over-high(ACC) or lower(MCC), and there is therefore larger improving room in the prediction precision. Methods: This paper utilizes the mutual information, I, to define the window length of 15aa, and the Pseudo Position Specific Scoring Matrix (PsePSSM), which is more fault-tolerance, to extract the features, and then trains multiple 1:1 SVC classifiers to model, and finally performs the simple votings. Results: The prediction results over two protein-ATP binding site datasets, the ATP168 and the ATP227, are totally superior to the independent prediction results obtained in the Reference Feature Extraction Approach. And in our approach, the MCC values are respectively improved, from the range of 0.3110 ~ 0.5360 and the range of 0.3060 ~ 0.553, to 0.7512 and 0.7106. Conclusion: Further, we explain why the PsePSSM approach is more fault-tolerance. This approach has a promising application prospect in the feature-extraction of protein sequences.


2020 ◽  
Author(s):  
Qingmei Zhang ◽  
Peishun Liu ◽  
Yu Han ◽  
Yaqun Zhang ◽  
Xue Wang ◽  
...  

ABSTRACTDNA binding proteins (DBPs) not only play an important role in all aspects of genetic activities such as DNA replication, recombination, repair, and modification but also are used as key components of antibiotics, steroids, and anticancer drugs in the field of drug discovery. Identifying DBPs becomes one of the most challenging problems in the domain of proteomics research. Considering the high-priced and inefficient of the experimental method, constructing a detailed DBPs prediction model becomes an urgent problem for researchers. In this paper, we propose a stacked ensemble classifier based method for predicting DBPs called StackPDB. Firstly, pseudo amino acid composition (PseAAC), pseudo position-specific scoring matrix (PsePSSM), position-specific scoring matrix-transition probability composition (PSSM-TPC), evolutionary distance transformation (EDT), and residue probing transformation (RPT) are applied to extract protein sequence features. Secondly, extreme gradient boosting-recursive feature elimination (XGB-RFE) is employed to gain an excellent feature subset. Finally, the best features are applied to the stacked ensemble classifier composed of XGBoost, LightGBM, and SVM to construct StackPDB. After applying leave-one-out cross-validation (LOOCV), StackPDB obtains high ACC and MCC on PDB1075, 93.44% and 0.8687, respectively. Besides, the ACC of the independent test datasets PDB186 and PDB180 are 84.41% and 90.00%, respectively. The MCC of the independent test datasets PDB186 and PDB180 are 0.6882 and 0.7997, respectively. The results on the training dataset and the independent test dataset show that StackPDB has a great predictive ability to predict DBPs.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaoli Ruan ◽  
Dongming Zhou ◽  
Rencan Nie ◽  
Yanbu Guo

Apoptosis proteins are strongly related to many diseases and play an indispensable role in maintaining the dynamic balance between cell death and division in vivo. Obtaining localization information on apoptosis proteins is necessary in understanding their function. To date, few researchers have focused on the problem of apoptosis data imbalance before classification, while this data imbalance is prone to misclassification. Therefore, in this work, we introduce a method to resolve this problem and to enhance prediction accuracy. Firstly, the features of the protein sequence are captured by combining Improving Pseudo-Position-Specific Scoring Matrix (IM-Psepssm) with the Bidirectional Correlation Coefficient (Bid-CC) algorithm from position-specific scoring matrix. Secondly, different features of fusion and resampling strategies are used to reduce the impact of imbalance on apoptosis protein datasets. Finally, the eigenvector adopts the Support Vector Machine (SVM) to the training classification model, and the prediction accuracy is evaluated by jackknife cross-validation tests. The experimental results indicate that, under the same feature vector, adopting resampling methods remarkably boosts many significant indicators in the unsampling method for predicting the localization of apoptosis proteins in the ZD98, ZW225, and CL317 databases. Additionally, we also present new user-friendly local software for readers to apply; the codes and software can be freely accessed at https://github.com/ruanxiaoli/Im-Psepssm.


2019 ◽  
Vol 20 (5) ◽  
pp. 362-370 ◽  
Author(s):  
Meiqi Wu ◽  
Pengchao Lu ◽  
Yingxi Yang ◽  
Liwen Liu ◽  
Hui Wang ◽  
...  

Background: Lysine lipoylation which is a rare and highly conserved post-translational modification of proteins has been considered as one of the most important processes in the biological field. To obtain a comprehensive understanding of regulatory mechanism of lysine lipoylation, the key is to identify lysine lipoylated sites. The experimental methods are expensive and laborious. Due to the high cost and complexity of experimental methods, it is urgent to develop computational ways to predict lipoylation sites. Methodology: In this work, a predictor named LipoSVM is developed to accurately predict lipoylation sites. To overcome the problem of an unbalanced sample, synthetic minority over-sampling technique (SMOTE) is utilized to balance negative and positive samples. Furthermore, different ratios of positive and negative samples are chosen as training sets. Results: By comparing five different encoding schemes and five classification algorithms, LipoSVM is constructed finally by using a training set with positive and negative sample ratio of 1:1, combining with position-specific scoring matrix and support vector machine. The best performance achieves an accuracy of 99.98% and AUC 0.9996 in 10-fold cross-validation. The AUC of independent test set reaches 0.9997, which demonstrates the robustness of LipoSVM. The analysis between lysine lipoylation and non-lipoylation fragments shows significant statistical differences. Conclusion: A good predictor for lysine lipoylation is built based on position-specific scoring matrix and support vector machine. Meanwhile, an online webserver LipoSVM can be freely downloaded from https://github.com/stars20180811/LipoSVM.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Wenzheng Bao ◽  
Bin Yang ◽  
Rong Bao ◽  
Yuehui Chen

Lysine lipoylation is a special type of posttranslational modification in both prokaryotes’ and eukaryotes’ proteomics researches. Such a modification takes part in several significant biological processions and plays a key role in the cellular level. In order to construct and design an accurate classification algorithm for identifying lipoylation sites in the protein level, the computational approaches should be taken into account in this field. Meanwhile, several factors plays different role in the identification of modification sites. Considering such a situation, the foundational elements of the effective identification of modification sites are the available feature description and the high effective classification. With these two elements, the distinguishing between the lipoylation samples and the nonlipoylation samples can be treated as a typical classification issue in the field of machine learning. In this work, we have proposed a method named LipoFNT, which employed the two featuring sets, including the Position-Specific Scoring Matrix and bi-profile Bayesian, as the classification features. And then, the flexible neural tree algorithm is utilized to deal with the imbalance classification issue in lipoylation modification sample dataset. The proposed method can achieve 81.07% in sn%, 80.29% in sp, 80.68% in Acc, 0.8076 in F1, and 0.6136 in MCC, respectively. Meanwhile, we have demonstrated the relationship between the lengths of peptide and identification of modification sites.


Sign in / Sign up

Export Citation Format

Share Document