scholarly journals Recognition of Errors in the Refinement and Validation of Three-Dimensional Structures of AC1 Proteins of Begomovirus Strains by Using ProSA-Web

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Rajneesh Prajapat ◽  
Avinash Marwal ◽  
R. K. Gaur

The structural model of begomovirus AC1 protein is useful for understanding biological function at molecular level and docking study. For this study we have used the ProSA program (Protein Structure Analysis) tool to establish the structure prediction and modeling of protein. This tool was used for refinement and validation of experimental protein structures. Potential problems of protein structures based on energy plots are easily seen by ProSA and are displayed in a three-dimensional manner. In the present study we have selected different AC1 proteins of begomovirus strains (YP_003288785, YP_002004579, and YP_003288773) for structural analysis and display of energy plots that highlight potential problems spotted in protein structures. The 3D models of Rep proteins with recognized errors can be effectively used for in silico docking study for development of potential ligand molecules against begomovirus infection.

Author(s):  
Arun G. Ingale

To predict the structure of protein from a primary amino acid sequence is computationally difficult. An investigation of the methods and algorithms used to predict protein structure and a thorough knowledge of the function and structure of proteins are critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this chapter sheds light on the methods used for protein structure prediction. This chapter covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, it presents an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction, giving unique insight into the future applications of the modeled protein structures. In this chapter, current protein structure prediction methods are reviewed for a milieu on structure prediction, the prediction of structural fundamentals, tertiary structure prediction, and functional imminent. The basic ideas and advances of these directions are discussed in detail.


2019 ◽  
Vol 52 (6) ◽  
pp. 1422-1426
Author(s):  
Rajendran Santhosh ◽  
Namrata Bankoti ◽  
Adgonda Malgonnavar Padmashri ◽  
Daliah Michael ◽  
Jeyaraman Jeyakanthan ◽  
...  

Missing regions in protein crystal structures are those regions that cannot be resolved, mainly owing to poor electron density (if the three-dimensional structure was solved using X-ray crystallography). These missing regions are known to have high B factors and could represent loops with a possibility of being part of an active site of the protein molecule. Thus, they are likely to provide valuable information and play a crucial role in the design of inhibitors and drugs and in protein structure analysis. In view of this, an online database, Missing Regions in Polypeptide Chains (MRPC), has been developed which provides information about the missing regions in protein structures available in the Protein Data Bank. In addition, the new database has an option for users to obtain the above data for non-homologous protein structures (25 and 90%). A user-friendly graphical interface with various options has been incorporated, with a provision to view the three-dimensional structure of the protein along with the missing regions using JSmol. The MRPC database is updated regularly (currently once every three months) and can be accessed freely at the URL http://cluster.physics.iisc.ac.in/mrpc.


2019 ◽  
Vol 20 (10) ◽  
pp. 2442 ◽  
Author(s):  
Teppei Ikeya ◽  
Peter Güntert ◽  
Yutaka Ito

To date, in-cell NMR has elucidated various aspects of protein behaviour by associating structures in physiological conditions. Meanwhile, current studies of this method mostly have deduced protein states in cells exclusively based on ‘indirect’ structural information from peak patterns and chemical shift changes but not ‘direct’ data explicitly including interatomic distances and angles. To fully understand the functions and physical properties of proteins inside cells, it is indispensable to obtain explicit structural data or determine three-dimensional (3D) structures of proteins in cells. Whilst the short lifetime of cells in a sample tube, low sample concentrations, and massive background signals make it difficult to observe NMR signals from proteins inside cells, several methodological advances help to overcome the problems. Paramagnetic effects have an outstanding potential for in-cell structural analysis. The combination of a limited amount of experimental in-cell data with software for ab initio protein structure prediction opens an avenue to visualise 3D protein structures inside cells. Conventional nuclear Overhauser effect spectroscopy (NOESY)-based structure determination is advantageous to elucidate the conformations of side-chain atoms of proteins as well as global structures. In this article, we review current progress for the structure analysis of proteins in living systems and discuss the feasibility of its future works.


2000 ◽  
Vol 33 (1) ◽  
pp. 176-183 ◽  
Author(s):  
Guoguang Lu

In order to facilitate the three-dimensional structure comparison of proteins, software for making comparisons and searching for similarities to protein structures in databases has been developed. The program identifies the residues that share similar positions of both main-chain and side-chain atoms between two proteins. The unique functions of the software also include database processingviaInternet- and Web-based servers for different types of users. The developed method and its friendly user interface copes with many of the problems that frequently occur in protein structure comparisons, such as detecting structurally equivalent residues, misalignment caused by coincident match of Cαatoms, circular sequence permutations, tedious repetition of access, maintenance of the most recent database, and inconvenience of user interface. The program is also designed to cooperate with other tools in structural bioinformatics, such as the 3DB Browser software [Prilusky (1998).Protein Data Bank Q. Newslett.84, 3–4] and the SCOP database [Murzin, Brenner, Hubbard & Chothia (1995).J. Mol. Biol.247, 536–540], for convenient molecular modelling and protein structure analysis. A similarity ranking score of `structure diversity' is proposed in order to estimate the evolutionary distance between proteins based on the comparisons of their three-dimensional structures. The function of the program has been utilized as a part of an automated program for multiple protein structure alignment. In this paper, the algorithm of the program and results of systematic tests are presented and discussed.


2009 ◽  
Vol 74 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Marija Mihajlovic ◽  
Petar Mitrasinovic

In the context of the recent pandemic threat by the worldwide spread of H5N1 avian influenza, novel insights into the mechanism of ligand binding and interaction between various inhibitors (zanamivir - ZMV, oseltamivir - OTV, 2,3-didehydro-2-deoxy-N-acetylneuraminic acid - DANA, peramivir - PMV) and neuraminidases (NA) are of vital importance for the structure-based design of new anti-viral drugs. To address this issue, three-dimensional models of H5N1-NA and N9-NA were generated by homology modeling. Traditional residues within the active site throughout the family of NA protein structures were found to be highly conserved in H5N1-NA. A subtle variation between lipophilic and hydrophilic environments in H5N1-NA with respect to N9-NA was observed, thus shedding more light on the high resistance of some H5N1 strains to various NA inhibitors. Based on these models, an ArgusLab4/AScore flexible docking study was performed. The conformational differences between OTV bound to H5N1-NA and OTV bound to N9-NA were structurally identified and quantified. A slight difference of less than 1 kcal mol-1 between the OTV-N9 and OTV-N1 binding free energies is in agreement with the experimentally predicted free energy difference. The conformational differences between ZMV and OTV bound to either H5N1-NA or N9-NA were structurally identified. The binding free energies of the ZMV complexes, being slightly higher than those of OTV, are not in agreement with what was previously proposed using homology modeling. The differences between ZMV and OTV are suggested to be ascribed to the presence/absence of Asn166 in the active cavity of ZMV/OTV in H5N1-NA, and to the presence/absence of Ser165 in the binding site of ZMV/OTV in N9-NA. The charge distribution was evaluated using the semi-empirical AM1 method. The trends of the AM1 charges of the ZMV and OTV side chains in the complexes deviate from those previously reported.


2004 ◽  
Vol 02 (03) ◽  
pp. 471-495 ◽  
Author(s):  
LUIGI PALOPOLI ◽  
GIORGIO TERRACINA

Predicting the three-dimensional structure of proteins is a difficult task. In the last few years several approaches have been proposed for performing this task taking into account different protein chemical and physical properties. As a result, a growing number of protein structure prediction tools is becoming available, some of them specialized to work on either some aspects of the predictions or on some categories of proteins; however, they are still not sufficiently accurate and reliable for predicting all kinds of proteins. In this context, it is useful to jointly apply different prediction tools and combine their results in order to improve the quality of the predictions. However, several problems have to be solved in order to make this a viable possibility. In this paper a framework and a tool is proposed which allows: (i) definition of a common reference applicative domain for different prediction tools; (ii) characterization of prediction tools through evaluating some quality parameters; (iii) characterization of the performances of a team of predictors jointly applied over a prediction problem; (iv) the singling out of the best team for a prediction problem; and (v) the integration of predictor results in the team in order to obtain a unique prediction. A system implementing the various steps of the proposed framework (CooPPS) has been developed and several experiments for testing the effectiveness of the proposed approach have been carried out.


2021 ◽  
Vol 12 (3) ◽  
pp. 3259-3304

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that transmitted from animal to human became a life-threatening pandemic in 2020. Scientists are currently testing several drugs to eradicate the COVID-19 outbreak. However, there is no 100 % effective drug or vaccine against SARS-CoV-2 has been discovered so far. In this study, we explored the structure prediction and functional analysis of 75 Malaysia SARS-CoV-2 strain’s structural and accessory proteins without the presence of experimental models. Physiochemical analysis, secondary structure analysis, structure prediction, functional characterization, active site identification, and evolutionary analysis based on the amino acid sequences retrieved from National Centre for Biotechnology Information (NCBI). Three-dimensional (3-D) protein structures were built using the Swiss model. The quality of protein models was verified by ERRAT, PROCHECK, and Verify 3D tools. Active prediction analysis revealed the high potential active sites of proteins where the anti-viral drug or vaccine may bind and inhibit the viral activities. Molecular phylogenetic analysis of ORF10, ORF8, and ORF6 proteins from five different species was analyzed. The results from this analysis proved that Homo sapiens SARS-CoV-2 had high genetic similarity with the bat coronavirus. These analyses may help in designing structure-based anti-viral drugs or to develop potential vaccines for SARS-CoV-2.


2021 ◽  
Vol 8 (3) ◽  
pp. 103-111
Author(s):  
Krishna R Gupta ◽  
Uttam Patle ◽  
Uma Kabra ◽  
P. Mishra ◽  
Milind J Umekar

Three-dimensional protein structure prediction from amino acid sequence has been a thought-provoking task for decades, but it of pivotal importance as it provides a better understanding of its function. In recent years, the methods for prediction of protein structures have advanced considerably. Computational techniques and increase in protein sequence and structure databases have influence the laborious protein structure determination process. Still there is no single method which can predict all the protein structures. In this review, we describe the four stages of protein structure determination. We have also explored the currenttechniques used to uncover the protein structure and highpoint best suitable method for a given protein.


2007 ◽  
Vol 40 (4) ◽  
pp. 773-777 ◽  
Author(s):  
B. Balamurugan ◽  
M. N. A. Md. Roshan ◽  
B. Shaahul Hameed ◽  
K. Sumathi ◽  
R. Senthilkumar ◽  
...  

A computing engine, theProtein Structure Analysis Package(PSAP), has been developed to calculate and display various hidden structural and functional features of three-dimensional protein structures. The proposed computing engine has several utilities to enable structural biologists to analyze three-dimensional protein molecules and provides an easy-to-use Web interface to compute and visualize the necessary features dynamically on the client machine. Users need to provide the Protein Data Bank (PDB) identification code or upload three-dimensional atomic coordinates from the client machine. For visualization, the free molecular graphics programsRasMolandJmolare deployed in the computing engine. Furthermore, the computing engine is interfaced with an up-to-date local copy of the PDB. The atomic coordinates are updated every week and hence users can access all the structures available in the PDB. The computing engine is free and is accessible online at http://iris.physics.iisc.ernet.in/psap/.


2021 ◽  
Vol 8 (3) ◽  
pp. 40
Author(s):  
Yuma Takei ◽  
Takashi Ishida

Model quality assessment (MQA), which selects near-native structures from structure models, is an important process in protein tertiary structure prediction. The three-dimensional convolution neural network (3DCNN) was applied to the task, but the performance was comparable to existing methods because it used only atom-type features as the input. Thus, we added sequence profile-based features, which are also used in other methods, to improve the performance. We developed a single-model MQA method for protein structures based on 3DCNN using sequence profile-based features, namely, P3CMQA. Performance evaluation using a CASP13 dataset showed that profile-based features improved the assessment performance, and the proposed method was better than currently available single-model MQA methods, including the previous 3DCNN-based method. We also implemented a web-interface of the method to make it more user-friendly.


Sign in / Sign up

Export Citation Format

Share Document