scholarly journals The Role of Plant Cell Wall Proteins in Response to Salt Stress

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lyuben Zagorchev ◽  
Plamena Kamenova ◽  
Mariela Odjakova

Contemporary agriculture is facing new challenges with the increasing population and demand for food on Earth and the decrease in crop productivity due to abiotic stresses such as water deficit, high salinity, and extreme fluctuations of temperatures. The knowledge of plant stress responses, though widely extended in recent years, is still unable to provide efficient strategies for improvement of agriculture. The focus of study has been shifted to the plant cell wall as a dynamic and crucial component of the plant cell that could immediately respond to changes in the environment. The investigation of plant cell wall proteins, especially in commercially important monocot crops revealed the high involvement of this compartment in plants stress responses, but there is still much more to be comprehended. The aim of this review is to summarize the available data on this issue and to point out the future areas of interest that should be studied in detail.

2018 ◽  
Vol 11 (536) ◽  
pp. eaao3070 ◽  
Author(s):  
Timo Engelsdorf ◽  
Nora Gigli-Bisceglia ◽  
Manikandan Veerabagu ◽  
Joseph F. McKenna ◽  
Lauri Vaahtera ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2478
Author(s):  
Xingwen Wu ◽  
Antony Bacic ◽  
Kim L. Johnson ◽  
John Humphries

The plant cell wall plays a critical role in signaling responses to environmental and developmental cues, acting as both the sensing interface and regulator of plant cell integrity. Wall-associated kinases (WAKs) are plant receptor-like kinases located at the wall—plasma membrane—cytoplasmic interface and implicated in cell wall integrity sensing. WAKs in Arabidopsis thaliana have been shown to bind pectins in different forms under various conditions, such as oligogalacturonides (OG)s in stress response, and native pectin during cell expansion. The mechanism(s) WAKs use for sensing in grasses, which contain relatively low amounts of pectin, remains unclear. WAK genes from the model monocot plant, Brachypodium distachyon were identified. Expression profiling during early seedling development and in response to sodium salicylate and salt treatment was undertaken to identify WAKs involved in cell expansion and response to external stimuli. The BdWAK2 gene displayed increased expression during cell expansion and stress response, in addition to playing a potential role in the hypersensitive response. In vitro binding assays with various forms of commercial polysaccharides (pectins, xylans, and mixed-linkage glucans) and wall-extracted fractions (pectic/hemicellulosic/cellulosic) from both Arabidopsis and Brachypodium leaf tissues provided new insights into the binding properties of BdWAK2 and other candidate BdWAKs in grasses. The BdWAKs displayed a specificity for the acidic pectins with similar binding characteristics to the AtWAKs.


1991 ◽  
Vol 137 (6) ◽  
pp. 765-767 ◽  
Author(s):  
Bernhard Gugsch ◽  
Dieter Klämbt

Author(s):  
Liangjie Niu ◽  
Wei Wang

ABSTRACTAs the vital component of plant cell wall, proteins play important roles in stress response through modifying wall structure and involving in wall integrity signaling. However, the potential of cell wall proteins (CWPs) in improvement of crop stress tolerance has probably been underestimated. Recently, we have critically reviewed the predictors, databases and cross-referencing of subcellular locations of possible CWPs in plants (Briefings in Bioinformatics 2018;19:1130-1140). In this study, taking maize (Zea mays) as an example, we retrieved 1873 entries of probable maize CWPs recorded in UniProtKB. As a result, 863 maize CWPs are curated and classified as 59 kinds of protein families. By referring to GO annotation and gene differential expression in Expression Atlas, we highlight the potential of CWPs as defensive forwards in abiotic and biotic stress responses. In particular, several CWPs are found to play key roles in adaptation to many stresses. String analysis also reveals possibly strong interactions among many CWPs, especially those stress-responsive enzymes. The results allow us to narrow down the list of CWPs to a few specific proteins that could be candidates to enhance maize resistance.


1996 ◽  
Vol 315 (1) ◽  
pp. 323-327 ◽  
Author(s):  
Jeffrey D. BRADY ◽  
Ian H. SADLER ◽  
Stephen C. FRY

A novel amino acid, di-isodityrosine, has been isolated from hydrolysates of cell walls of tomato cell culture. Analysis by UV spectrometry, partial derivatization with 2,4-dinitrofluorobenzene and mass and NMR spectrometry show that the compound is composed to two molecules of isodityrosine, joined by a biphenyl linkage. The possible reactions involved in the formation of this molecule in vivo are discussed, as is the possibility that it could form an interpolypeptide linkage between cell wall proteins such as extensin, and hence aid in the insolubilization of the protein in the wall.


2017 ◽  
Author(s):  
Timo Engelsdorf ◽  
Nora Gigli-Bisceglia ◽  
Manikandan Veerabagu ◽  
Joseph F. McKenna ◽  
Frauke Augstein ◽  
...  

AbstractPlant cells are surrounded by walls, which must often meet opposing functional requirements during plant growth and defense. The cells meet them by modifying wall structure and composition in a tightly controlled and adaptive manner. The modifications seem to be mediated by a dedicated cell wall integrity (CWI) maintenance mechanism. Currently the mode of action of the mechanism is not understood and it is unclear how its activity is coordinated with established plant defense signaling. We investigated responses to induced cell wall damage (CWD) impairing CWI and the underlying mechanism in Arabidopsis thaliana. Interestingly inhibitor- and enzyme-derived CWD induced similar, turgor-sensitive stress responses. Genetic analysis showed that the receptor-like kinase (RLK) FEI2 and the mechano-sensitive, plasma membrane-localized Ca2+- channel MCA1 function downstream of the THE1 RLK in CWD perception. Phenotypic clustering with 27 genotypes identified a core group of RLKs and ion channels, required for activation of CWD responses. By contrast, the responses were repressed by pattern-triggered immune (PTI) signaling components including PEPR1 and 2, the receptors for the immune signaling peptide AtPep1. Interestingly AtPep1 application repressed CWD-induced phytohormone accumulation in a PEPR1/2-dependent manner. These results suggest that PTI suppresses CWD-induced defense responses through elicitor peptide-mediated signaling during defense response activation. If PTI is impaired, the suppression of CWD-induced responses is alleviated, thus compensating for defective PTI.Significance statementStress resistance and plant growth determine food crop yield and efficiency of bioenergy production from ligno-cellulosic biomass. Plant cell walls are essential elements of the biological processes, therefore functional integrity of the cell walls must be maintained throughout. Here we investigate the plant cell wall integrity maintenance mechanism. We characterize its mode of action, identify essential signaling components and show that the AtPep1 signaling peptide apparently coordinates pattern triggered immunity (PTI) and cell wall integrity maintenance in plants. These results suggest how PTI and cell wall modification coordinately regulate biotic stress responses with plants possibly compensating for PTI impairment through enhanced activation of stress responses regulated by the CWI maintenance mechanism.


2006 ◽  
Vol 103 (3) ◽  
pp. 515-522 ◽  
Author(s):  
Francesca FRATI ◽  
Roberta GALLETTI ◽  
Giulia DE LORENZO ◽  
Gianandrea SALERNO ◽  
Eric CONTI

2020 ◽  
Vol 21 (8) ◽  
pp. 2731
Author(s):  
Elisabeth Jamet ◽  
Christophe Dunand

Plant cell walls surround cells and provide both external protection and a means of cell-to-cell communication [...]


Sign in / Sign up

Export Citation Format

Share Document