Numerical Calculation of the Force Coefficient for Cylindrical Shape Smokestack Covered with Corrugated Iron

2016 ◽  
Vol 821 ◽  
pp. 79-84
Author(s):  
Vladimira Michalcova ◽  
Lenka Lausova

The article deals with the influence of a shape of the smokestacks casing on the final load from wind effects. It describes possibilities of defining an equivalent aerodynamic roughness and aerodynamic drag coefficient for numerical modelling of the flow around a circular cylinder. The aim is to determine the force coefficient for a smokestack of a cylindrical shape, which is sheeted with corrugated sheet metal. The flow around a smokestack is solved in software Ansys Fluent using the DES model.

Author(s):  
Vladimira Michalcova ◽  
Lenka Lausova

Abstract The article deals with the influence of a shape of smokestack casing on the total load from wind effects. It describes possibilities of defining an equivalent aerodynamic roughness and aerodynamic drag coefficient for numerical modelling of the flow around a circular cylinder. The aim of this study is to solve the force coefficient for the smokestack of a cylindrical shape, which is jacketed with shaped sheets. The flow around a smokestack is solved in the ANSYS Fluent software using the DES model.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Shubham Singh ◽  
M. Zunaid ◽  
Naushad Ahmad Ansari ◽  
Shikha Bahirani ◽  
Sumit Dhall ◽  
...  

CFD simulations using ANSYS FLUENT 6.3.26 have been performed on a generic SUV design and the settings are validated using the experimental results investigated by Khalighi. Moreover, an add-on inspired by the concept presented by Englar at GTRI for drag reduction has been designed and added to the generic SUV design. CFD results of add-on model and the basic SUV model have been compared for a number of aerodynamic parameters. Also drag coefficient, drag force, mean surface pressure, mean velocities, and Cp values at different locations in the wake have been compared for both models. The main objective of the study is to present a new add-on device which may be used on SUVs for increasing the fuel efficiency of the vehicle. Mean pressure results show an increase in the total base pressure on the SUV after using the device. An overall reduction of 8% in the aerodynamic drag coefficient on the add-on SUV has been investigated analytically in this study.


2015 ◽  
Vol 9 (3) ◽  
pp. 161-166
Author(s):  
Aneta Bohojło-Wiśniewska

Summary This paper presents an example of humid air flow around a single head of Chinese cabbage under conditions of complex heat transfer. This kind of numerical simulation allows us to create a heat and humidity transfer model between the Chinese cabbage and the flowing humid air. The calculations utilize the heat transfer model in porous medium, which includes the temperature difference between the solid (vegetable tissue) and fluid (air) phases of the porous medium. Modelling and calculations were performed in ANSYS Fluent 14.5 software.


Author(s):  
O.I. MARKOV

Numerical modelling thermal and thermoelectric processes in a branch of solid–state thermoelectric of Peltier cooler is performed, taking into account heat exchange by convection and radiation. The numerical calculation of the branch was carried out in the mode of the maximum temperature difference.


2014 ◽  
Vol 1042 ◽  
pp. 188-193 ◽  
Author(s):  
Xing Jun Hu ◽  
Jing Chang

In order to analyze the impact of engine cabin parts on aerodynamic characteristics, the related parts are divided into three categories except the engine cooling components: front thin plates (average thickness of 2mm), bottom-suspension and interior panels. The aerodynamic drag coefficient (Cd) were obtained upon the combination schemes consisting of the three types of parts by numerical simulation. Results show that Cd by simulation is closer to the test value gained by the wind tunnel experiment when front thin plates were simplified to the two-dimensional interface with zero thickness. The error is only 5.23%. Meanwhile this scheme reduces grid numbers, thus decreasing the calculating time. As the front thin plates can guide the flow, there is no difference on the Cd values gained from the model with or without bottom-suspension or interior panels when the engine cabin contains the front thin plates; while only both bottom-suspension and interior panels are removed, the Cd value can be reduced when the cabin doesn’t contain the front thin plates.


2018 ◽  
Vol 48 (9) ◽  
pp. 2189-2207 ◽  
Author(s):  
Yu. Troitskaya ◽  
O. Druzhinin ◽  
D. Kozlov ◽  
S. Zilitinkevich

AbstractIn Part I of this study, we used high-speed video to identify “bag breakup” fragmentation as the dominant mechanism by which spume droplets are generated at gale-force and hurricane wind speeds. We also constructed a spray generation function (SGF) for the bag-breakup mechanism. The distinctive feature of this new SGF is the presence of giant (~1000 μm) droplets, which may significantly intensify the exchange between the atmosphere and the ocean. In this paper, Part II, we estimate the contribution of the bag-breakup mechanism to the momentum and enthalpy fluxes, which are known to strongly affect the development and maintenance of hurricanes. We consider three contributions to the spray-mediated aerodynamic drag: 1) “bags” as obstacles before fragmentation, 2) acceleration of droplets by the wind in the course of their production, and 3) stable stratification of the marine atmospheric boundary layer due to levitating droplets. Taking into account all of these contributions indicates a peaking dependence of the aerodynamic drag coefficient on the wind speed, which confirms the results of field and laboratory measurements. The contribution of the spray-mediated flux to the ocean-to-atmosphere moist enthalpy is also estimated using the concept of “reentrant spray,” and the equation for the enthalpy flux from a single droplet to the atmosphere is derived from microphysical equations. Our estimates show that a noticeable increase in the enthalpy exchange coefficient at winds exceeding 30–35 m s−1 is due to the enhancement of the exchange processes caused by the presence of giant droplets originating from bag-breakup fragmentation.


2017 ◽  
Vol 865 ◽  
pp. 247-252
Author(s):  
Gui Tao Du

Because of the added mass, the aerodynamic drag of the automobile will increase obviously when accelerating in the still air. In this paper, it firstly gave the definition of the added mass, and presented that there was little research on the calculation of the added mass of automobile. Then through the analysis of the theoretical calculation method for the added mass, it pointed out that, for the added mass of the car-body with a complex shape, there was much difficulty in the theoretical calculation. Alternatively, a numerical calculation method for the added mass of car-body was derived. The simulation model adopted the Ahmed body and the corresponding verification experiment was completed in the Tongji Automotive Wind Tunnel center. The results indicate that the added mass is a constant which is only dependent on the body-shape. For the model investigated, the added mass is 0.0052kg that is approximately equal to the air displaced by the car-body. As the body accelerates to 4m/s2, the aerodynamic drag is increased by 1.89% because of added mass. Therefore, it needs to pay more attention to the impact that the added mass has on the dynamic performance of vehicle when proceeding the aerodynamic designs (especially for the high power performance vehicles). Meanwhile, it still makes a correction to the conventional aerodynamic drag formula. This paper also demonstrates that, with the analysis of the flow-field of car-body, the added mass essentially stems from the additionally work done by the car-body to increase the kinetic energy of external fluid as it speeds up.


CFD letters ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 51-68
Author(s):  
Nurul Azihan Ramli ◽  
Azlin Mohd Azmi ◽  
Ahmad Hussein Abdul Hamid ◽  
Zainal Abidin Kamarul Baharin ◽  
Tongming Zhou

Flow over bluff bodies produces vortex shedding in their wake regions, leading to structural failure from the flow-induced forces. In this study, a passive flow control method was explored to suppress the vortex shedding from a circular cylinder that causes many problems in engineering applications. Perforated shrouds were used to control the vortex shedding of a circular cylinder at Reynolds number, Re = 200. The shrouds were of non-uniform and uniform holes with 67% porosity. The spacing gap ratio between the shroud and the cylinder was set at 1.2, 1.5, 2, and 2.2. The analysis was conducted using ANSYS Fluent using a viscous laminar model. The outcomes of the simulation of the base case were validated with existing studies. The drag coefficient, Cd, lift coefficient, Cl and the Strouhal number, St, as well as vorticity contours, velocity contours, and pressure contours were examined. Vortex shedding behind the shrouded cylinders was observed to be suppressed and delayed farther downstream with increasing gap ratio. The effect was significant for spacing ratio greater than 2.0. The effect of hole types: uniform and non-uniform holes, was also effective at these spacing ratios for the chosen Reynolds number of 200. Specifically, a spacing ratio of 1.2 enhanced further the vortex intensity and should be avoided.


Sign in / Sign up

Export Citation Format

Share Document