scholarly journals Soluplus Graft Copolymer: Potential Novel Carrier Polymer in Electrospinning of Nanofibrous Drug Delivery Systems for Wound Therapy

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Urve Paaver ◽  
Ingrid Tamm ◽  
Ivo Laidmäe ◽  
Andres Lust ◽  
Kalle Kirsimäe ◽  
...  

Electrospinning is an effective method in preparing polymeric nanofibrous drug delivery systems (DDSs) for topical wound healing and skin burn therapy applications. The aim of the present study was to investigate a new synthetic graft copolymer (Soluplus) as a hydrophilic carrier polymer in electrospinning of nanofibrous DDSs. Soluplus (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (PCL-PVAc-PEG)) was applied in the nonwoven nanomats loaded with piroxicam (PRX) as a poorly water-soluble drug. Raman spectroscopy, X-ray powder diffraction, differential scanning calorimetry, and scanning electron microscopy (SEM) were used in the physical characterization of nanofibrous DDSs. According to the SEM results, the drug-loaded PCL-PVAc-PEG nanofibers were circular in cross-section with an average diameter ranging from 500 nm up to 2 µm. Electrospinning stabilized the amorphous state of PRX. In addition, consistent and sustained-release profile was achieved with the present nanofibrous DDSs at the physiologically relevant temperature and pH applicable in wound healing therapy. In conclusion, electrospinning can be used to prepare nanofibrous DDSs of PCL-PVAc-PEG graft copolymer (Soluplus) and to stabilize the amorphous state of a poorly water-soluble PRX. The use of this synthetic graft copolymer can open new options to formulate nanofibrous DDSs for wound healing.

2013 ◽  
Vol 63 (4) ◽  
pp. 427-445 ◽  
Author(s):  
Katja Čerpnjak ◽  
Alenka Zvonar ◽  
Mirjana Gašperlin ◽  
Franc Vrečer

Abstract Low oral bioavailability as a consequence of low water solubility of drugs is a growing challenge to the development of new pharmaceutical products. One of the most popular approaches of oral bioavailability and solubility enhancement is the utilization of lipid-based drug delivery systems. Their use in product development is growing due to the versatility of pharmaceutical lipid excipients and drug formulations, and their compatibility with liquid, semi-solid, and solid dosage forms. Lipid formulations, such as self-emulsifying (SEDDS), self-microemulsifying SMEDDS) and self- -nanoemulsifying drug delivery systems (SNEDDS) were explored in many studies as an efficient approach for improving the bioavailability and dissolution rate of poorly water-soluble drugs. One of the greatest advantages of incorporating poorly soluble drugs into such formulations is their spontaneous emulsification and formation of an emulsion, microemulsion or nanoemulsion in aqueous media. This review article focuses on the following topics. First, it presents a classification overview of lipid-based drug delivery systems and mechanisms involved in improving the solubility and bioavailability of poorly water-soluble drugs. Second, the article reviews components of lipid-based drug delivery systems for oral use with their characteristics. Third, it brings a detailed description of SEDDS, SMEDDS and SNEDDS, which are very often misused in literature, with special emphasis on the comparison between microemulsions and nanoemulsions.


Molecules ◽  
2015 ◽  
Vol 20 (11) ◽  
pp. 20397-20408 ◽  
Author(s):  
Matthew McKenzie ◽  
David Betts ◽  
Amy Suh ◽  
Kathryn Bui ◽  
London Kim ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hina Shrestha ◽  
Rajni Bala ◽  
Sandeep Arora

The principle objective of formulation of lipid-based drugs is to enhance their bioavailability. The use of lipids in drug delivery is no more a new trend now but is still the promising concept. Lipid-based drug delivery systems (LBDDS) are one of the emerging technologies designed to address challenges like the solubility and bioavailability of poorly water-soluble drugs. Lipid-based formulations can be tailored to meet a wide range of product requirements dictated by disease indication, route of administration, cost consideration, product stability, toxicity, and efficacy. These formulations are also a commercially viable strategy to formulate pharmaceuticals, for topical, oral, pulmonary, or parenteral delivery. In addition, lipid-based formulations have been shown to reduce the toxicity of various drugs by changing the biodistribution of the drug away from sensitive organs. However, the number of applications for lipid-based formulations has expanded as the nature and type of active drugs under investigation have become more varied. This paper mainly focuses on novel lipid-based formulations, namely, emulsions, vesicular systems, and lipid particulate systems and their subcategories as well as on their prominent applications in pharmaceutical drug delivery.


2021 ◽  
Vol 28 ◽  
Author(s):  
Jing Li ◽  
Qinhua Chen ◽  
Jin Wang ◽  
Xiaoyan Pan ◽  
Jie Zhang

: Hydrogel is a hydrophilic but water-soluble polymer system with a three-dimensional network structure. Hydrogel can absorb large amounts of water and maintain its shape and remain soft. The high-moisturizing properties, good biocompatibility and controlled biodegradability of hydrogels have allowed them to be widely used in wound dressing, tissue engineering, controlled drug delivery systems and other fields. This article reviews the most widely used antibacterial gel dressings for wound healing in recent years and focuses on the application of an environmentally responsive intelligent hydrogel delivery system. Finally, the development prospects and challenges of hydrogel wound dressings are forecasted.


2019 ◽  
Vol 39 (6) ◽  
pp. 534-544
Author(s):  
Farid Ouazib ◽  
Naima Bouslah Mokhnachi ◽  
Nabila Haddadine ◽  
Regis Barille

Abstract Drug delivery systems based upon the blending of Arabic gum and poly(N-vinylpyrrolidone) (AG/PVP) were prepared for the controlled release of acebutolol (Acb) hydrochloride. The prepared blends containing Acb were characterized using different techniques. The presence of physical interactions between the drug and polymer matrices was observed with Fourier-transform infrared spectroscopy. These interactions resulted in the transition of the drug from a crystalline to an amorphous state into the polymeric matrices, as demonstrated by differential scanning calorimetry and X-ray diffraction analysis. The thermogravimetric analysis study confirmed the presence of these interactions, which had a stabilizing effect on the drug against both thermal degradation and crystallinity. The in vitro release of Acb from the AG/PVP polymer system was investigated. Each drug-loaded system was used in a tablet formulation. Moreover, an in vitro dissolution study was carried out in three different dissolution media, and comparison of the dissolution profiles of the different dosage forms revealed that the polymer blend matrix had a better release-retarding efficiency. To better understand the release mechanism, the dissolution data were fitted to various release kinetic models.


Sign in / Sign up

Export Citation Format

Share Document