scholarly journals Dynamic Traffic Network Model and Time-Dependent Braess’ Paradox

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Chunxue Zhao

We propose a dynamic traffic network model and give the equilibrium condition and the equivalent variational inequality of the network. In this model, instead of the influence of inflow rate and output rate on the link congestion, the influence of the adjacent links at the same paths is considered; in this case, the equivalence between the equilibrium condition and the variational inequality is proved. Then we take an example about the paradox using the variational inequality and find that the probability and the severity that Braess’ paradox occurs change with the influence of other links changing. Subsequently, we discuss the influence of other links on whether the adding link works under the dynamic system optimal. At last, we give the relationship between the total congestion under dynamic user equilibrium and that under dynamic system optimal. The results imply that we should take some methods and adjust the interaction between links rationally with the dynamic change of traffic situations.

1998 ◽  
Vol 1617 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Owen Chen ◽  
Moshe Ben-Akiva

The dynamic traffic control problem and the dynamic traffic assignment problem are integrated as a noncooperative game between a traffic authority and highway users. The objective of the combined control-assignment problem is to find a mutually consistent dynamic system-optimal signal setting and dynamic user-optimal traffic flow. The combined control-assignment problem is first formulated as a one-level Cournot game: the traffic authority and the users choose their strategies simultaneously. The combined control-assignment problem is subsequently formulated as a bi-level Stackelberg game. The traffic authority is the leader; it determines the signal settings in anticipation of the users’ reactions. The users are followers who choose their routes after the signal settings have been determined. Finally, the system-optimal control-assignment problem is formulated as a Monopoly game. The sole player—the traffic authority—determines both signal settings and traffic flows to achieve a dynamic system-optimal solution. A numerical example is provided to illustrate the equilibria of the games.


2012 ◽  
Vol 238 ◽  
pp. 503-506 ◽  
Author(s):  
Zhi Cheng Li

The successful application of Intelligent Transportation Systems (ITS) depends on the traffic flow at any time with high-precision and large-scale assessments, it is necessary to create a dynamic traffic network model to evaluate and forecast traffic. Dynamic route choice model sections of the run-time function are very important to the dynamic traffic network model. To simplify the dynamic traffic modeling, improve the calculation accuracy and save computation time, the flow on the section of the interrelationship between the exit flow and number of vehicles are analyzed, a run-time functions into the flow using only sections of the said sections are established.


2013 ◽  
Vol 779-780 ◽  
pp. 1044-1051
Author(s):  
Ming Hua Zeng ◽  
Xi Yan Huang ◽  
Ni Dong ◽  
Xiao Guang Yang

Inefficiency upper bounds are explored in stochastic traffic network. Equilibrium flow pattern therein is deduced by a central Stackelberg strategy and tax schemes imposed on each link.. The equivalent variational inequality (VI) for Logit-based stochastic user equilibrium (SUE) model is established and first used to obtain upper bounds on Stackelberg network inefficiency under the assumption of separable, nondecreasing, and convex link time function and of fixed network origin-destination (OD) demand. For typical Bureau of Public Roads (BPR) functions and its affine forms, the upper bounds of their inefficiency are investigated with some meaningful results.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3822 ◽  
Author(s):  
Wenbin Zha ◽  
Yuqi Guo ◽  
Huawei Wu ◽  
Miguel Angel Sotelo ◽  
Yulin Ma ◽  
...  

When faced with problems such as traffic state estimation, state prediction, and congestion identification for the expressway network, a novel switched observer design strategy with jump states is required to reconstruct the traffic scene more realistically. In this study, the expressway network is firstly modeled as the special discrete switched system, which is called the piecewise affine system model, a partition of state subspace is introduced, and the convex polytopes are utilized to describe the combination modes of cells. Secondly, based on the hybrid dynamic traffic network model, the corresponding switched observer (including state jumps) is designed. Furthermore, by applying multiple Lyapunov functions and S-procedure theory, the observer design problem can be converted into the existence issue of the solutions to the linear matrix inequality. As a result, a set of gain matrices can be obtained. The estimated states start to jump when the mode changes occur, and the updated value of the estimated state mainly depends on the estimated and the measured values at the previous time. Lastly, the designed state jump observer is applied to the Beijing Jingkai expressway, and the superiority and the feasibility are demonstrated in the application results.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
ShuGuang Li ◽  
QingHua Zhou

We propose a dynamic combined-mode traffic network model considering transfer behaviors. We assume that travelers can be classified into two classes: one class is pure-mode travelers who complete a trip by single transportation mode, and another is combined-mode travelers who cover a journey by car, bus, and so forth. The multimode point queue model is used to model the interaction of cars and buses on the network. We present an integrated variational inequality formulation to capture the complex traveler choice behaviors such as departure time choices, transfer point, and route choices. Finally, a numerical example is given to illustrate the effectiveness of the proposed heuristic algorithm and model.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bai-Bai Fu ◽  
Chun-Xue Zhao ◽  
Shu-bin Li

The investigation of the paradox and robustness about the traffic network is an important branch of the traffic assignment. In this paper, Braess’ paradox and robustness of the dynamic traffic network are analyzed by the dynamic traffic assignment models. In addition, the relationship of total costs with different traffic assignment models is discussed. The results show that the paradox only occurs in certain range; the robustness of the network and the relationship of total traffic costs are changed as the traffic demand changes, which provides theoretical guidance for the urban transportation planning.


Sign in / Sign up

Export Citation Format

Share Document