scholarly journals Physicochemical Characterization of Thermally Treated Chitosans and Chitosans Obtained by Alkaline Deacetylation

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ana Maria de Oliveira ◽  
Telma Teixeira Franco ◽  
Enio Nazaré de Oliveira Junior

The thermal depolymerization of chitosan and alkaline deacetylation of chitin were characterized by measurement of viscosity, gel permeation chromatography (GPC), potentiometric titration (PT), and proton nuclear magnetic resonance spectroscopy (H1NMR). The depolymerization rates (DR) measured by kinematic viscosity (KV), apparent viscosity (AV), and GPC (Mw) until 4 h of treatment wereDRKV=21.9,DRAV=25.5, andDRMw=23.3% h-1and for 5 to 10 h of treatment they decreased slowly to produce ofDRKV=0.545,DRAV=0.248, andDRMw=1.11% h-1. The mole fraction of N-acetylglucosamine residuesFAof chitosans was not modified after 10 h of thermal treatment at 100°C. The initialFAvalues of chitosan without any treatment wereFAPT=0.21andFAHNMR1=0.22and of chitosan treated for 10 h wereFAPT=0.27andFAHNMR1=0.22. The variables used to characterize the depolymerization process showed a good correlation. Six hours of thermal treatment as sufficient to obtain chitosans with a molar mass 90% smaller than that of the control chitosan without treatment.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evamaria C. Gaugler ◽  
Wolfgang Radke ◽  
Andrew P. Vogt ◽  
Dawn A. Smith

AbstractMolar masses, Mark-Houwink-Sakurada (MHS) exponents, and refractive index increments (dn/dc) for three lignins were determined without derivatization by multi-detector gel permeation chromatography (GPC) in dimethylformamide (DMF) with 0.05 M lithium bromide (LiBr). The lack of effectiveness of fluorescence filters on molar mass determination by GPC-multi-angle laser light scattering (MALS) was confirmed for softwood kraft lignin (Indulin AT) and revealed for mixed hardwood organosolv lignin (Alcell) as well as soda straw/grass lignin (Protobind 1000). GPC with viscometry detection confirmed that these lignins were present as compact molecules. The MHS exponent α for Indulin AT and Alcell was in the order of 0.1. Additionally, the intrinsic viscosity of Protobind 1000 for a given molar mass was much lower than that of either Alcell or Indulin AT. This is the first report of dn/dc values for these three lignins in DMF with 0.05 M LiBr.


Author(s):  
Cigdem Kilicarislan Ozkan ◽  
Hasan Ozgunay

Dialdehyde starches with different aldehyde content from native corn starch were prepared by sodium periodate oxidation to be used as a tanning agent in leather making. For this purpose, native corn starch was oxidized with sodium metaperiodate in different molar ratios. After oxidation processes, the yields, solubility in water and aldehyde contents of the obtained dialdehyde starches were determined as well as structure characterizations by Proton Nuclear Magnetic Resonance Spectroscopy, Fourier Transform Infrared Spectroscopy and Gel Permeation Chromatography. Evaluating the gel permeation chromatography data, the dialdehyde starch samples which were thought to be in appropriate molecular weight/size to penetrate into skin fibers were selected to be used in the tanning process. Their tanning abilities were evaluated by investigating hydrothermal stabilities, filling and fiber isolation characteristics and physical properties determined by mechanical tests and organoleptically. From the evaluation of the results, it was revealed that sodium metaperiodate oxidized starches which have appropriate molecular weight and adequate aldehyde content has a remarkable tanning effect and can be utilized as a tanning agent with the advantages of not necessitating pickling process which means saving time and simplifying the production but more importantly offering an important advantage from an environmental point of view.


1985 ◽  
Vol 58 (2) ◽  
pp. 295-303 ◽  
Author(s):  
H. K. Gupta ◽  
R. Salovey

Abstract Molar mass and compositional distributions in copolymers of butadiene and acrylonitrile have been analyzed by gel permeation chromatography with multiple detection. In some cases, a third component could not be separated by size-exclusion chromatography and was presumed to be an antioxidant attached to the copolymer chains. The amount of this antioxidant was measured by ultraviolet detection at 280 nm of chromatographic effluents and found to increase in amount with decreasing molar volume. Molar mass and compositional distributions were derived from corrected ultraviolet responses at 254 nm coupled with refractive index detection of BAN solutions separated by GPC. The variation of composition with molecular size depends on the composition of the monomer feed and, presumably, the conversion. For copolymers close the azeotropic composition (36% ACN), the composition was fairly uniform over the entire molecular weight distribution and showed a single Tg by differential scanning calorimetry. Some of the materials showed gel or insoluble fractions which had to be separated from the soluble moieties prior to GPC. Copolymers of composition slightly above azeotropic showed a single Tg but could be separated into sol and gel fractions which differed in composition. Infrared and calorimetric analysis showed that, in these cases, the gel was enriched in acrylonitrile. A sample containing 20% acrylonitrile showed marked deviations from compositional uniformity, and the high molecular weight components were enriched in butadiene. Infrared and calorimetric analysis of the sol and gel fractions showed that they were enriched in acrylonitrile and butadiene, respectively. In fact, the elastomer evidenced two glass transition temperatures. We suggest that gel permeation chromatography with multiple detection, specifically refractive index and ultraviolet absorption at 254 and at 280 nm, permits a fairly complete characterization of BAN elastomers. With computer analysis, a sophisticated raw material quality control is feasible and simple. We plan to reexamine our assumptions using laboratory synthesized BAN copolymers. Moreover, we hope to relate the physical properties of elastomers and rubber compounds with the molecular characterization of BAN copolymers. As an alternative to ultraviolet detection in GPC, it may be possible to get a more complete functional group analysis by infrared spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document