organosolv lignin
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 85)

H-INDEX

40
(FIVE YEARS 10)

Author(s):  
Hongwei Zhu ◽  
Boyu Du ◽  
Zhenshu Zhang ◽  
Xing Wang ◽  
Yang Sun ◽  
...  
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7774
Author(s):  
Jakub Grzybek ◽  
Thomas Sepperer ◽  
Alexander Petutschnigg ◽  
Thomas Schnabel

As lignin is becoming more and more attractive to industry and the circular economy continues to grow, the utilization of a byproduct that, to date, has been underrated by the wood industry is investigated as an abundantly available source of lignin. Bark from spruce, larch and beech tress is extracted using the organosolv process with and without prior hot water extraction. The influence of the treatment on chemical properties of the lignin was determined by spectrophotometric, chromatographic, and vibrational spectroscopy. It was found that hot water extraction prior to organosolv extraction influences the chemical composition, antioxidative properties and molecular weight distribution of the obtained extracts. While hot water extracts are rich in flavonoids, organosolv fractions can contain high amounts of organic acids depending on whether they are from a hardwood or softwood source. This investigation lays the foundation for further research into the utilization of byproducts to generate high-value resources.


Author(s):  
Muhammad Hazwan Hamzah ◽  
Steve Bowra ◽  
Philip Cox

Abstract Background Lignin is the second most abundant naturally occurring biopolymer from lignocellulosic biomass. While there are several lignin applications, attempts to add value to lignin are hampered by its inherent complex and heterogenous chemical structure. This work assesses the organosolv lignin aggregates behaviour of soluble lignin extract derived from Miscanthus × giganteus using different ethanol concentrations (50%, 40%, 30%, 20%, 10% and 1%). The effect of two different lignin concentrations using similar ethanol concentration on the efficacy of esterification was studied. Results Overall, particle size of lignin analysis showed that the particle size of lignin aggregates decreased with lower ethanol concentrations. 50% ethanol concentration of soluble lignin extract showed the highest particle size of lignin (3001.8 nm), while 331.7 nm of lignin particle size was recorded at 1% ethanol concentration. Such findings of particle size correlated well with the morphology of the lignin macromolecules. The lignin aggregates appeared to be disaggregated from population of large aggregates to sub-population of small aggregates when the ethanol concentration was reduced. Light microscopy images analysis by ImageJ shows that the average diameter and circularity of the corresponding lignin macromolecules differs according to different ethanol concentrations. The dispersion of lignin aggregates at low ethanol concentration resulted in high availability of hydroxyl group in the soluble lignin extract. The efficacy of the lignin modification via esterification was evidenced directly via FTIR using the similar ethanol concentration of soluble lignin extract at different lignin concentrations. Conclusion This study provided the understanding of detail analysis on particle size determination, microscopic properties and structural insights of lignin aggregates at wider ethanol concentrations. The esterified lignin derived at 5 mg/mL is suggested to expand greater lignin functionality in the preparation of lignin bio-based materials.


Author(s):  
John Obielodan ◽  
Maia Delwiche ◽  
Dan Clark ◽  
Cassie Downing ◽  
Delanie Huntoon ◽  
...  

Abstract This work investigates the differences in mechanical and thermal properties of polylactic acid (PLA)/lignin biocomposites made of four different unmodified organosolv lignin materials, three of which were extracted from different woody biomass (maple, oak, and pine) in-house, and one sourced commercially. Filaments made from blends of 30wt% and 40wt% of the in-house lignin and the commercially sourced lignin as fillers in PLA were used to 3D-print experimental test samples using fused filament fabrication (FFF) process. Statistically significant differences were observed in the mechanical properties based on tension testing and Izod impact testing, while differences in thermal properties based on differential scanning calorimetry (DSC) and thermogravimetric (TGA) analysis were less significant. Test samples with 30wt% lignin had tensile strengths that were higher than those of 40wt% lignin. Among the three in-house extracted lignin from the woody biomass resources, maple-based composites consistently yielded the highest tensile strengths while oak-based materials yielded the highest stiffness in tension testing and the most stability in impact resistance. The pine-based materials showed the most decline in strengths between 30wt% and 40wt% lignin loadings. The commercially obtained lignin at 30wt% and pine-based lignin at 40wt% yielded much higher percent elongations at failure than all other materials. This study demonstrates the influence of lignin biomass resources and their concentrations on the properties and performances of 3D printed specimens.


2021 ◽  
Vol 9 ◽  
Author(s):  
Minting Xie ◽  
Zhendong Chen ◽  
Yue Xia ◽  
Minsheng Lin ◽  
Jiaqi Li ◽  
...  

Tricin as a monomer of grass lignin with unique biological properties is beneficial to human health with the potential for various applications. The abundant grass lignin could be an alternative source for tricin if an effective separation method is available. In this study, we used different lignin preparations, including alkali lignin (AL), mild acidolysis lignin (MAL), cellulase enzymatic lignin (CEL), γ-valerolactone lignin (GVL), and organosolv lignin (OL), to investigate the effect of different fractionation methods on the tricin content of the wheat straw lignin. The tricin signal of different lignins can be clearly identified by 2D heteronuclear singular quantum correlation (HSQC) spectra. GVL showed the highest tricin level among these lignin samples as the tricin content of GVL was accounted to be 8.6% by integrals. The tricin content was carefully determined using thioacidolysis combined with high-performance liquid chromatography-mass spectrometric (HPLC-MS), and the quantitative results of tricin by HPLC-MS were basically consistent with that of 2D HSQC integrals. Both methods have proved that the tricin contents of lignins isolated under acid conditions were significantly higher than that of AL. In addition, the determination of the sun protection factors (SPF) of lignin-based sunscreen and antioxidant activity of lignin preparations indicated that reserving more tricin was beneficial to the UV resistance of lignin samples. Therefore, this study not only provides new insights for the extraction methods of lignin with high tricin content but also is beneficial to the future study on the application of tricin and tricin-lignin.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7966-7990
Author(s):  
Nadja Cachet ◽  
Bouchra Benjelloun-Mlayah

Organosolv lignins were extracted from corn stover, wheat, rice straw, reed straw, and sugarcane bagasse using a mixture of acetic and formic acids, at relatively low temperature and atmospheric pressure. Lignin content, residual carbohydrates, ash levels, proteins, and molecular weights were determined in each extracted lignin. The lignin content of all samples was relatively high, confirming the performance of the pretreatment process. The low molecular weights were in a narrow range, in accordance with the organosolv lignin molar masses. However, some differences between studied lignins were highlighted, in particular in rice straw lignin, which contained the highest silica, calcium, and nitrogen contents. Nuclear magnetic resonance spectroscopies (31P and semi-quantitative Heteronuclear Single Quantum Correlation) underlined the structural similarities and differences between these organosolv lignins. Corn stover and sugarcane bagasse lignins were rich in non-methoxylated (H-Unit) or mono-methoxylated (G-Unit) phenolic units, making them the best promising candidates for production of phenolic resins. Wheat straw lignin was richer in aliphatic OH than in phenolic OH. This is an advantage for use as polyol substitute in polyurethane synthesis. Reed straw lignin was less specific, with a balanced content of OH groups. However, it contained a high concentration of β-O-4 linkages, which is favorable for depolymerization.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3473
Author(s):  
Jordan T. Sutton ◽  
Kalavathy Rajan ◽  
David P. Harper ◽  
Stephen C. Chmely

Despite recent successes in incorporating lignin into photoactive resins, lignin photo-properties can be detrimental to its application in UV-curable photopolymers, especially in specialized engineered resins for use in stereolithography printing. We report on chemical modification techniques employed to reduce UV absorption by lignin and the resulting mechanical, thermal, and cure properties of these modified lignin materials. Lignin was modified using reduction and acylation reactions and incorporated into a 3D printable resin formulation. UV–Vis absorption at the 3D printing range of 405 nm was reduced in all modified lignins compared to the unmodified sample by 25% to ≥ 60%. Resins made with the modified lignins showed an increase in stiffness and strength with lower thermal stability. Studying these techniques is an important step in developing lignin for use in UV-curing applications and further the effort to valorize lignin towards commercial use.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3355
Author(s):  
Faisal Amri Tanjung ◽  
Yalun Arifin ◽  
Retna Astuti Kuswardani

This article aimed to study the effects of chitosan fiber and a newly modifying agent, based on organosolv lignin, on mechanical and thermal performances and the enzymatic degradation of PLA/chitosan biocomposites. A newly modifying agent based on polyacrylic acid-grafted organosolv lignin (PAA-g-OSL) was synthesized via free radical copolymerization using t-butyl peroxide as the initiator. The biocomposites were prepared using an internal mixer and the hot-pressed method at various fiber loadings. The results demonstrate that the addition of chitosan fiber into PLA biocomposites remarkably decreases tensile strength and elongation at break. However, it improves the Young’s modulus. The modified biocomposites clearly demonstrat an improvement in tensile strength by approximately 20%, with respect to the unmodified ones, upon the presence of PAA-g-OSL. Moreover, the thermal stability of the modified biocomposites was enhanced significantly, indicating the effectiveness of the thermal protective barrier of the lignin’s aromatic structure belonging to the modifying agent during pyrolysis. In addition, a slower biodegradation rate was exhibited by the modified biocomposites, relative to the unmodified ones, that confirms the positive effects of their improved interfacial interaction, resulting in a decreased area that was degraded through enzyme hydrolysis.


Sign in / Sign up

Export Citation Format

Share Document