scholarly journals Generalized Predator-Prey Model with Nonlinear Impulsive Control Strategy

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Wenjie Qin ◽  
Guangyao Tang ◽  
Sanyi Tang

A generalized predator-prey model concerning integrated pest management and nonlinear impulsive control measures is proposed and analyzed. The main purpose is to understand how resource limitation affects the successful pest control and pest outbreaks. The threshold conditions for the stability of the pest-free periodic solution are given firstly. Once the threshold value exceeds a critical level, both pest and its natural enemy populations can oscillate periodically. Secondly, in order to address how the limited resources affect the pest control, as an example the Holling II functional response function is chosen. The numerical results show that predator-prey model with limited resource has complex dynamical behavior. In addition, it is confirmed that the model has the coexistence of pests and natural enemies for a wide range of parameters.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Wenjie Qin ◽  
Sanyi Tang ◽  
Robert A. Cheke

The dynamical behavior of a Holling II predator-prey model with control measures as nonlinear pulses is proposed and analyzed theoretically and numerically to understand how resource limitation affects pest population outbreaks. The threshold conditions for the stability of the pest-free periodic solution are given. Latin hypercube sampling/partial rank correlation coefficients are used to perform sensitivity analysis for the threshold concerning pest extinction to determine the significance of each parameter. Comparing this threshold value with that without resource limitation, our results indicate that it is essential to increase the pesticide’s efficacy against the pest and reduce its effectiveness against the natural enemy, while enhancing the efficiency of the natural enemies. Once the threshold value exceeds a critical level, both pest and its natural enemies populations can oscillate periodically. Further-more, when the pulse period and constant stocking number as a bifurcation parameter, the predator-prey model reveals complex dynamics. In addition, numerical results are presented to illustrate the feasibility of our main results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Changtong Li ◽  
Sanyi Tang ◽  
Robert A. Cheke

Abstract An expectation for optimal integrated pest management is that the instantaneous numbers of natural enemies released should depend on the densities of both pest and natural enemy in the field. For this, a generalised predator–prey model with nonlinear impulsive control tactics is proposed and its dynamics is investigated. The threshold conditions for the global stability of the pest-free periodic solution are obtained based on the Floquet theorem and analytic methods. Also, the sufficient conditions for permanence are given. Additionally, the problem of finding a nontrivial periodic solution is confirmed by showing the existence of a nontrivial fixed point of the model’s stroboscopic map determined by a time snapshot equal to the common impulsive period. In order to address the effects of nonlinear pulse control on the dynamics and success of pest control, a predator–prey model incorporating the Holling type II functional response function as an example is investigated. Finally, numerical simulations show that the proposed model has very complex dynamical behaviour, including period-doubling bifurcation, chaotic solutions, chaos crisis, period-halving bifurcations and periodic windows. Moreover, there exists an interesting phenomenon whereby period-doubling bifurcation and period-halving bifurcation always coexist when nonlinear impulsive controls are adopted, which makes the dynamical behaviour of the model more complicated, resulting in difficulties when designing successful pest control strategies.


2021 ◽  
pp. 1-28
Author(s):  
ANURAJ SINGH ◽  
PREETI DEOLIA

In this paper, we study a discrete-time predator–prey model with Holling type-III functional response and harvesting in both species. A detailed bifurcation analysis, depending on some parameter, reveals a rich bifurcation structure, including transcritical bifurcation, flip bifurcation and Neimark–Sacker bifurcation. However, some sufficient conditions to guarantee the global asymptotic stability of the trivial fixed point and unique positive fixed points are also given. The existence of chaos in the sense of Li–Yorke has been established for the discrete system. The extensive numerical simulations are given to support the analytical findings. The system exhibits flip bifurcation and Neimark–Sacker bifurcation followed by wide range of dense chaos. Further, the chaos occurred in the system can be controlled by choosing suitable value of prey harvesting.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xinhong Zhang ◽  
Qing Yang

<p style='text-indent:20px;'>In this paper, we consider a stochastic predator-prey model with general functional response, which is perturbed by nonlinear Lévy jumps. Firstly, We show that this model has a unique global positive solution with uniform boundedness of <inline-formula><tex-math id="M1">\begin{document}$ \theta\in(0,1] $\end{document}</tex-math></inline-formula>-th moment. Secondly, we obtain the threshold for extinction and exponential ergodicity of the one-dimensional Logistic system with nonlinear perturbations. Then based on the results of Logistic system, we introduce a new technique to study the ergodic stationary distribution for the stochastic predator-prey model with general functional response and nonlinear jump-diffusion, and derive the sufficient and almost necessary condition for extinction and ergodicity.</p>


2005 ◽  
Vol 13 (01) ◽  
pp. 45-58 ◽  
Author(s):  
YUJUAN ZHANG ◽  
ZHILONG XU ◽  
BING LIU ◽  
LANSUN CHEN

A Holling I predator-prey model with mutual interference concerning pest control is proposed and analyzed. The prey and predator are considered to be a pest and a natural enemy, respectively. The model is forced by the addition of periodic impulsive terms representing predator import (biological control) and pesticide application (chemical control) at different fixed moments. By using Floquet theory and small amplitude perturbations, we show the existence and stability of pest-free periodic solutions. Further, we prove that when the stability of pest-free periodic solutions is lost, the system is permanent by using analytic methods of differential equation theory. Numerical solutions are also given, which show that when stability of pest-free periodic solutions is lost, more exotic behavior can occur, such as quasi-periodic oscillation or chaos. We investigate the effect of impulsive perturbations on the unforced continuous system, and find that the forced system has a different dynamical behavior with a different range of initial values which are inside or outside the unstable limit cycle of the unforced continuous system. Finally, we compare the validity of the combination of biological control and chemical control with classical methods and conclude that the synthetical strategy is more effective than classical methods if we take effective chemical control.


2018 ◽  
Vol 13 (03) ◽  
pp. 109-131
Author(s):  
Anjana Das ◽  
M. Pal

In this paper, we have proposed and analyzed an agricultural pest control system. For this purpose, an eco-epidemiological type predator–prey model has been proposed with the consideration of a sound predator population and two classes of pest populations namely susceptible pest and infected pest. Further to consider uncertainty, we modify our model and transform it into a fuzzy system with incorporation of imprecise parameters. The dynamical behavior of the proposed model has been investigated by examining the existence and stability criteria of all feasible equilibria. An optimal control problem is formed by considering the pesticide control as the control parameter and then the problem is solved both theoretically and numerically with the help of some computer simulation works.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Junli Liu ◽  
Pan Lv ◽  
Bairu Liu ◽  
Tailei Zhang

In this paper, we propose a time-delayed predator-prey model with Holling-type II functional response, which incorporates the gestation period and the cost of fear into prey reproduction. The dynamical behavior of this system is both analytically and numerically investigated from the viewpoint of stability, permanence, and bifurcation. We found that there are stability switches, and Hopf bifurcations occur when the delay τ passes through a sequence of critical values. The explicit formulae which determine the direction, stability, and other properties of the bifurcating periodic solutions are given by using the normal form theory and center manifold theorem. We perform extensive numerical simulations to explore the impact of some important parameters on the dynamics of the system. Numerical simulations show that high levels of fear have a stabilizing effect while relatively low levels of fear have a destabilizing effect on the predator-prey interactions which lead to limit-cycle oscillations. We also found that the model with or without a delay-dependent factor can have a significantly different dynamics. Thus, ignoring the delay or not including the delay-dependent factor might result in inaccurate modelling predictions.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Changtong Li ◽  
Xiaozhou Feng ◽  
Yuzhen Wang ◽  
Xiaomin Wang

According to resource limitation, a more realistic pest management is that the impulsive control actions should be adjusted according to the densities of both pest and natural enemy in the field, which result in nonlinear impulsive control. Therefore, we have proposed a Beddington–DeAngelis interference predator-prey model concerning integrated pest management with both density-dependent pest and natural enemy population. We find that the pest-eradication periodic solution is globally stable if the impulsive period is less than the critical value by Floquet theorem. The condition of permanent is established, and a stable positive periodic solution appears via a supercritical bifurcation by bifurcation theorem. Finally, in order to investigate the effects of those nonlinear control strategies on the successful pest control, the bifurcation diagrams showed that the model exists with very complex dynamics. Consequently, the resource limitation may result in pest outbreak in complex ways, which means that the pest control strategies should be carefully designed.


Sign in / Sign up

Export Citation Format

Share Document