scholarly journals A Novel Distributed Online Anomaly Detection Method in Resource-Constrained Wireless Sensor Networks

2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
Zhiguo Ding ◽  
Haikuan Wang ◽  
Minrui Fei ◽  
Dajun Du

In this paper, a novel distributed online anomaly detection method in resource-constrained WSNs was proposed. Firstly, the spatiotemporal correlation existing in the sensed data was exploited and a series of single anomaly detectors were built in each distributed deployment sensor node based on ensemble learning theory. Secondly, these trained detectors were broadcasted to the member sensor nodes in the cluster, combining with its trained detector, and the initial ensemble detector was built. Thirdly, considering resources-constrained WSNs, ensemble pruning based on biogeographical based optimization (BBO) was employed in the cluster head node to obtain an optimized subset of ensemble members. Further, the pruned ensemble detector coded by the state matrix was broadcasted to each member sensor nodes for the distributed online global anomaly detection. Finally, the experiments operated on a real WSN dataset demonstrated the effectiveness of the proposed method.

Information ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 236 ◽  
Author(s):  
Nengsong Peng ◽  
Weiwei Zhang ◽  
Hongfei Ling ◽  
Yuzhao Zhang ◽  
Lixin Zheng

A key issue in wireless sensor network applications is how to accurately detect anomalies in an unstable environment and determine whether an event has occurred. This instability includes the harsh environment, node energy insufficiency, hardware and software breakdown, etc. In this paper, a fault-tolerant anomaly detection method (FTAD) is proposed based on the spatial-temporal correlation of sensor networks. This method divides the sensor network into a fault neighborhood, event and fault mixed neighborhood, event boundary neighborhood and other regions for anomaly detection, respectively, to achieve fault tolerance. The results of experiment show that under the condition that 45% of sensor nodes are failing, the hit rate of event detection remains at about 97% and the false negative rate of events is above 92%.


2015 ◽  
Vol 785 ◽  
pp. 744-750
Author(s):  
Lei Gao ◽  
Qun Chen

In order to solve the energy limited problem of sensor nodes in the wireless sensor networks (WSN), a fast clustering algorithm based on energy efficiency for wire1ess sensor networks is presented in this paper. In the system initialization phase, the deployment region is divided into several clusters rapidly. The energy consumption ratio and degree of the node are chosen as the selection criterion for the cluster head. Re-election of the cluster head node at this time became a local trigger behavior. Because of the range of the re-election is within the cluster, which greatly reduces the complexity and computational load to re-elect the cluster head node. Theoretical analysis indicates that the timing complexity of the clustering algorithm is O(1), which shows that the algorithm overhead is small and has nothing to do with the network size n. Simulation results show that clustering algorithm based on energy efficiency can provide better load balancing of cluster heads and less protocol overhead. Clustering algorithm based on energy efficiency can reduce energy consumption and prolong the network lifetime compared with LEACH protocol.


2019 ◽  
Vol 16 (2) ◽  
pp. 496-502
Author(s):  
N. Vadivelan ◽  
A. Ramamurthy ◽  
P. Padmaja

Wireless sensor networks were organized with the collections of sensor nodes for the purpose of monitoring physical phenomenon such as temperature, humidity and seismic events, etc., in the real world environments where the manual human access is not possible. The major tasks of this type of networks are to route the information to sink systems in the sensor network from sensor nodes. Sensors are deployed in a large geographical area where human cannot enter such as volcanic eruption or under the deep sea. Hence sensors are not rechargeable and limited with battery backup; it is very complicated to provide the continuous service of sending information to sink systems from sensor nodes. To overcome the drawback of limited battery power, this paper proposes the concept of minimizing energy consumption with the help of neural networks. The modified form of HRP protocol called energy efficient HRP protocol has been implemented in this paper. Based on this concept, the workload of cluster head is shared by the cluster isolation node in order to increase the lifetime of the cluster head node. Also cluster monitoring node is introduced to reduce the re-clustering process. The implementation procedure, algorithm, results and conclusions were proved that the proposed concept is better than the existing protocols.


2013 ◽  
Vol 321-324 ◽  
pp. 515-522 ◽  
Author(s):  
Kou Lin Yuan ◽  
Lin Qiao ◽  
Lei Han

This paper proposes a level and cluster based routing approach for a wireless sensor network. Nodes in the network are divided into several levels according to their hops to sink node. Every sensor node has a level number. Using level information, a sensor node can send messages to a sink node in a more efficient way, and a sink node can easily locate other sensor nodes. To make network more balanced, the paper introduces a cluster method, which splits nodes in the same level into different clusters, and chooses a cluster head for every cluster, to switch nodes in the cluster to work in turn. Unlike all other cluster routing methods, a cluster head node takes schedule jobs of sensor nodes in the cluster according to their energy left, instead of sensing. The paper also presents several algorithms for constructing a wireless sensor network, querying and scheduling. The simulation experiment shows that the scalability of our method is approximately linear.


2015 ◽  
Vol 743 ◽  
pp. 748-752 ◽  
Author(s):  
L.F. Liu ◽  
P. Guo ◽  
J. Zhao ◽  
N. Li

Wireless sensor network routing protocol is to prolong the survival time of wireless sensor networks by using the sensor nodes energy efficiently. Traditional LEACH protocol is random in the election of the cluster head, if a less energy node is first elected as a cluster head node, then the node might die soon, it will greatly reducing the lifetime of the network. In order to collect data more efficiently and prolong the network life cycle,we need better clustering protocol. Aim at the traditional LEACH protocol have some weakness,this paper improve the protocol based on traditional LEACH protocol, two influence factors which the residual energy and the number of elected cluster head of the nodes had been introduced to make the clustering more ideal. Simulation results show that compared to the traditional Leach algorithm ,the improved LEACH protocol can prolong the network life cycle more effective and reduce the energy consumption of the whole network.


2018 ◽  
Vol 14 (06) ◽  
pp. 85 ◽  
Author(s):  
Xudong Yang

<p class="0abstract"><span lang="EN-US">To prolong the survival time of wireless sensor network, an iterative scheme was proposed. First of all, spectrum clustering algorithm iteratively segmented the network into clusters, and cluster head nodes in each sub cluster were determined depending on the size of residual energy of sensor nodes. Then, a data forwarding balance tree was constructed in each sub cluster. Data forwarding path of each non-cluster head node was defined, and the moving path of a mobile data collector was determined, which used the residual energy as the basis for the network optimization. Finally, this scheme was simulated, and two traditional data gathering algorithms were compared. The results showed that the algorithm designed in this experiment could effectively balance energy consumption among all WSN nodes and had great performance improvement compared with the traditional data collection algorithm. To sum up, this algorithm can significantly reduce the energy consumption of the network and improve the lifetime of the network. </span></p>


2016 ◽  
Vol 12 (10) ◽  
pp. 97
Author(s):  
Jun Ma

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; -ms-layout-grid-mode: line; mso-fareast-font-family: SimSun; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">In this paper the dynamic point target tracking is studied, and a message driven target tracking algorithm based on non-ranging is proposed by combining the actual sensor node characteristics. By tissue tracking around the target sensor nodes collaborate to establish a tracking cluster and the cluster head node for data fusion to accurately locate the target and thus formed a kind of efficient and precise distributed dynamic tracking cluster algorithm of DTC. The tracking cluster can follow the target as a shadow, and it can realize the management of the cluster itself and constantly report to the sink node to the target location. The protocol is especially suitable for the use of large scale wireless sensor networks with low node cost.</span>


Robust and efficient algorithms for routing and other process for a wireless sensor network are under active development due to technological advancements on wireless transmission systems. Each of the sensor nodes in a wireless sensor network either transmits or forwards the data packets to the base station. The main objective of the majority of the work in the literature is to save the energy consumption efficiently. The cluster based routing mechanism helps to achieve low energy consumption within the network. The network organizes its nodes as a cluster and selects a particular node as cluster head to manage the transmission within and between clusters. The majority of the clustering approach selects the cluster head using a thresholding based approach. Nodes having energy level higher than the threshold are the candidates for the cluster head selection. In the proposed approach the nodes remaining energy and the sum of distance between individual nodes to the cluster head node is considered. Optimal cluster head selection will help to increase the overall life time of the network. The distance between the sensor nodes is estimated using RSSI (Received Signal Strength Indicator) and other parameters measured from the physical layer. Experiments are conducted with simulation environment created with the NS-2 simulator and efficiency of the approach is analyzed in detail.


Wireless sensor network environment based on limited resources technology. Energy is one of the most significant resources in such systems, so ideal utilization of energy is essential. A high energy efficient with trustable routingprotocol for Wireless_Sensor_Networks covered under this_paper. The protocol is trustworthy as far as data conveyance at the Base_Station. We assumed about portability in sensor nodes and in the base station. The proposed protocol depends on the cluster and hierarchical routing protocols. All clusters comprises of unique cluster-head-node and two-deputy-clusterhead-nodes, and several normal sensor-nodes. The cluster-head panel model introduced to optimize the re-clustering time and energy prerequisites. As consider the protocol trustworthiness, it lays finest exertion to guarantee a predetermined level of performance at the base-station. Contingent upon the network topology, transmit data from cluster head node to base station that done either by direct or indirect i.e. multi-hop way. Also, substitute ways are utilized for data transmission between a cluster head node and the base station. Thorough NS2 simulation-results delineate energy-efficiency, throughput, and delayed-lifetime of sensor-nodes affected by the proposedprotocol.


Sign in / Sign up

Export Citation Format

Share Document