scholarly journals Research and Evaluation for Passive Safety System in Low Pressure Reactor

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Peng Chuanxin ◽  
Zhuo Wenbin ◽  
Chen Bingde ◽  
Nie Changhua ◽  
Huang Yanping

Low pressure reactor is a small size advanced reactor with power of 180 MWt, which is under development at Nuclear Power Institute of China. In order to assess the ability and feasibility of passive safety system, several tests have been implemented on the passive safety system (PSS) test facility. During the LOCA and SBO accident, the adequate core cooling is provided by the performance of passive safety system. In addition the best-estimate thermal hydraulic code, CATHARE V2.1, has been assessed against cold leg LOCA test. The calculation results show that CATHARE is in a satisfactory agreement with the test for the steady state and transient test.

Author(s):  
Sheng Zhu

CAP1400 is a large pressurized water reactor based on the passive safety conception. An ACME (Advanced Core-cooling Mechanism Experiment) facility has been designed and constructed in order to validate that the CAP1400 system design is acceptable to mitigate the loss of coolant accident (LOCA). The ACME test facility is an isotonic pressure, 1/3-scale height and 1/54.32-scale power simulation of the prototype CAP1400 nuclear power plant. It contains the main-loop system, passive safety system, secondary steam system and auxiliary system etc. The all of ACME test matrix including 5 kinds 21 cases .In this paper, the test results and the Realp5 prediction of the cold leg 5cm break accident of CAP1400 are compared and analyzed to briefly evaluate the ACME capability. Furthermore, 3 different types of 5cm cold leg break test cases are presented, and the transient process, system responses and key parameters tendency are analyzed based on the test. The results indicate that the passive safety system design can successfully combine to provide a continuous removal of core decay heat and the reactor core remains to be covered with considerable margin for the 3 different 5cm cold leg break accidents.


Author(s):  
Mingtao Cui ◽  
Tao Zhang

ACME facility (Advanced Core-cooling Mechanism Experiment) is a large-scale test facility used to validate the performance of passive core-cooling system under SBLOCA (Small Break Lost of Coolant Accident) for the CAP1400, an upgraded passive safety nuclear power plant of AP1000. To simulate the features of passive safety system properly, DELTABAR, a kind of differential pressure flow meter, is designed to measure different mass flow of ACME. Because of the low pressure loss of DELTABAR, Zero-Drift problem of differential pressure flow meters in ACME is amplified, and some of the measured values are distorted seriously. To minimize the influence of Zero-Drift, analysis on zero-drift phenomenon is made, and a compensation method is proposed. The method is applying to PBL flow meters, and the result shows that the method is applicable.


Author(s):  
Ye Cheng ◽  
Wang Minglu ◽  
Qiu Zhongming ◽  
Wang Yong

With the demand for nuclear power increasing, the first choice of almost all countries who want to build a new nuclear power plant is to use generation III technology, primarily because the safety of generation III technology is greatly improved compared with that of generation II and II + technology. The passive safety technology was introduced by the AP1000 and is one of the best applications of generation III technologies. In this study, the representative passive containment cooling system of the CAP1400 (developed based on AP1000) and the containment spray system of a generation II nuclear power plant are compared and analyzed using the Probabilistic Safety Assessment method. The reasons why a passive safety system has comparative advantages are determined by concrete calculations.


Author(s):  
Pan Wu ◽  
Junli Gou ◽  
Jianqiang Shan ◽  
Bo Zhang ◽  
Xiang Li

This paper describes the preliminary safety analysis of a thermal-spectrum SCWR concept (CSR1000), which was proposed by Nuclear Power Institute of China (NPIC). The passive safety system and the design of the two-pass core concept characterize the safety performance of CSR1000. With code SCTRAN (a one-dimensional safety analysis code for SCWRs), loss of coolant flow accidents (LOFA) and loss of coolant accident (LOCA) as well as some other typical transients and accidents were analysed. The maximum cladding surface temperature (MCST) was regarded as an important criterion. The sensitivity analyses of some crucial parameters are helpful for the safety evaluation. Thus some parameters about the safety system and the actuation conditions, such as the delay time of the ADS actuation, the break area in LOCA analysis, were also involved in this paper. The analyses have shown that the proposed passive safety system is capable to mitigate the consequence of the selected abnormalities. The results will be a useful reference for the future development of CSR1000.


Author(s):  
Wei Li ◽  
Shuhong Du ◽  
Weiquan Gu ◽  
Nan Zhang ◽  
Ming Ding ◽  
...  

Abstract HPR1000 is an advanced nuclear power plant with the significant feature of an active and passive safety design philosophy, developed by the China National Nuclear Corporation. It is based on the large accumulated knowledge from the design, construction as well as operations experience of nuclear power plants in China. The passive containment cooling system (PCS) of HPR1000 is an important and innovative passive safety system to suppress the pressure in the containment during LOCA. In this paper, the detailed design process of PCS is reviewed, and an integrated experiment facility for the study on the coupling behavior between PCS and thermal hydraulic characteristics in the containment is described, and arrangement of measuring points including temperature, pressure, gas composition and so on are introduced in detailed. Also, the experimental energy released and energy vent to ensure the similarity of containment pressure response, thermal stratification and PCS heat removal is introduced. According to this versatile experiment facility can conduct real-engineering system test which is designed to support the PCS development. In addition, this valuable experience in the design and manufacture of integrated experiment facility can provide important technical support and guidance for the China next generation advanced PWR as well as safety related system.


Atomic Energy ◽  
2010 ◽  
Vol 108 (2) ◽  
pp. 97-102
Author(s):  
V. E. Karnaukhov ◽  
A. O. Verkhovskaya ◽  
O. E. Stepanov ◽  
A. V. Bulanov ◽  
M. L. Lukashenko ◽  
...  

Author(s):  
Zhanfei Qi ◽  
Sheng Zhu

CAP1400 Pressurized Water Reactor is developed by China’s State Nuclear Power Technology Corporation (SNPTC) based on the passive safety concept and advanced system design. The Advanced Core-cooling Mechanism Experiment (ACME) integral effect test facility, which was constructed at Tsinghua University, represents a 1/3-scale height of CAP1400 RCS and passive safety features. It is designed to simulate the performance of CAP1400 passive core cooling system in the small break loss of coolant accidents (SBLOCA) for design certification, safety review and safety analysis code development. The Long Term Core Cooling (LTCC) post-LOCA could be simulated by ACME as well. A series of test cases with various break sizes and locations with post-LOCA LTCC period were conducted in ACME facility. This paper describes the post-LOCA LTCC test conducted in ACME test facility. The LTCC phenomena in different cases are very similar. It’s found that the interval that switching from IRWST injection to sump recirculation has the least safety margin. However, it’s shown that the post-LOCA LTCC in ACME could be well maintained by passive core cooling system according to the test results even though the recirculation water level in ACME IRWST-2 is lower than the containment recircualtion level in CAP1400 conservatively.


Sign in / Sign up

Export Citation Format

Share Document